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Hydrogen can be produced from water, using electricity. The hydrogen can subsequently be kept in inventory

in large quantities, unlike the electricity itself. This enables solar and wind energy generation to occur

asynchronously from its usage. For this reason, hydrogen is expected to be a key ingredient for reaching

a climate-neutral economy. However, the logistics for hydrogen are complex. Inventory policies must be

determined for multiple locations in the network, and transportation of hydrogen from the production

location to customers must be scheduled. At the same time, production patterns of hydrogen are intermittent,

which affects the possibilities to realize the planned transportation and inventory levels. To provide policies

for efficient transportation and storage of hydrogen, this paper proposes a parameterized cost function

approximation approach to the stochastic cyclic inventory routing problem. Firstly, our approach includes

a parameterized mixed integer programming (MIP) model which yields fixed and repetitive schedules for

vehicle transportation of hydrogen. Secondly, buying and selling decisions in case of underproduction or

overproduction are optimized further via a Markov decision process (MDP) model, taking into account the

uncertainties in production and demand quantities. To jointly optimize the parameterized MIP and the MDP

model, our approach includes an algorithm that searches the parameter space by iteratively solving the MIP

and MDP models. We conduct computational experiments to validate our model in various problem settings

and show that it provides near-optimal solutions. Moreover, we test our approach on an expert-reviewed

case study at two hydrogen production locations in the Netherlands. We offer insights for the stakeholders

in the region and analyze the impact of various problem elements in these case studies.

Key words : green hydrogen, stochastic cyclic inventory routing, static and dynamic decision making

1. Introduction

Renewable energy supply is known to be intermittent and uncertain (Anvari et al. 2016). For

example, wind and solar energy generation depend on weather conditions (Drücke et al. 2021). A

common way to maintain the balance between supply and demand in the electricity network is by

means of conventional gas-fired power plants (Safari et al. 2019), which have an easily adjustable

power output. The high market prices for natural gas, along with the desire of many countries to
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eliminate the use of fossil fuels (e.g., European Union 2012), stimulate the development and use of

other mechanisms to balance supply and demand of energy in the network. The use of hydrogen

as a storage medium for energy (Liu et al. 2010) is such an alternative balancing mechanism,

which is expected to be deployed increasingly towards the future (Abe et al. 2019). Hydrogen can

be produced emission-free from (renewable) electricity when supply exceeds demand. It can be

stored and transported as a gas, and can be converted emission-free into electricity when needed

(Oliveira, Beswick, and Yan 2021). Since conversions between hydrogen and electricity result in

significant energy losses, direct use of hydrogen as a vehicle fuel, a heating source for households,

and a feedstock for the industry is also considered attractive (Ball and Wietschel 2009).

A typical hydrogen-based energy network consists of a hydrogen producer and multiple hydrogen

customers. The producer makes hydrogen from renewable energy sources, which yields a stochastic

hydrogen supply per period. The producer is responsible for replenishing geographically dispersed

customers, who generate electricity from hydrogen, or use it directly. Customers have stochastic

demand for hydrogen per period. Although hydrogen can be transported via pipelines, this is for

most applications not considered a likely scenario in the near future (Staffell et al. 2019). Hydrogen

is therefore transported between locations via vehicles. The producer and the customers each have

a storage facility to keep hydrogen in stock to buffer between deliveries. The capacities of these

storage facilities are limited. There are two main challenges that arise in the planning for such a

network.

Firstly, we need a transportation delivery schedule for transporting hydrogen from the producer

to the customers. Similar to the cyclic inventory routing problem (CIRP, see Raa and Aghezzaf

2009, Rau, Budiman, and Widyadana 2018) this consists of: (1) a repetitive schedule with fixed time

intervals between consecutive deliveries for each of the customers, (2) the routing for all vehicles,

which determines which customers are delivered by which vehicle and in which sequence. The

repetitive schedule and routing are decided upon at the beginning of the planning horizon and are

subsequently used in all periods. This helps customers and the producer to align their dependent

planning processes and associated resources as they will know exactly when the deliveries will

occur.

Secondly, we need to manage hydrogen availability across all locations in response to stochastic

supply at the producer and stochastic demand at the customers. As commonly deployed in the

stochastic inventory routing problem (SIRP, see Raa and Aouam 2021, Sonntag, Schrotenboer, and

Kiesmüller 2022), the producer determines the delivery quantity for each customer by using an

inventory policy. Specifically, for each delivery period –as imposed by the transportation delivery

schedule– we have a base-stock policy for each customer, given a required service level. The base-

stock levels for a customer can differ between delivery periods. Furthermore, the limited size of
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Figure 1 Our paper considers a stochastic, cyclic, inventory routing problem with stochastic supply occurring in

hydrogen logistics.

the producers’ storage facility, combined with the stochasticity in supply and demand, may lead

to hydrogen shortages or surpluses at the producer’s location. The producer is connected to an

external hydrogen market at which it can buy and sell hydrogen at market prices to guarantee that

customers’ service levels are met. Dynamic purchasing decisions at the producer determine when

to buy and sell hydrogen, and in which quantity.

It is crucial that both the static transportation delivery schedule and the producer’s dynamic

purchasing decisions are optimized jointly to achieve long run global optimal solutions. This is

complex, however, because the static transportation delivery schedule is decided upon only once,

while the purchasing decisions are made dynamically in every period that follows. In isolation, these

two decision problems are addressed in their own, natural way. Obtaining a static transportation

delivery schedule is done using mixed integer programming (MIP) models and methods. On the

other hand, the dynamic purchasing decisions are modeled naturally as a Markov decision process

(MDP), thus requiring stochastic dynamic programming. In our hydrogen setting, the outcome of

the MIP defines the size and timing of the stochastic demand faced by the producer, and thus

defines the state, action, and transition space of the MDP. How to best combine this into a joint

optimization problem is a yet unresolved fundamental question in inventory routing for which, to

the best of the authors’ knowledge, no generic solution approach exists.

In this paper, we consider a stochastic cyclic inventory routing problem (SCIRP) with supply

uncertainty, as illustrated in Figure 1. Its goal is to find a long run, global optimal solution that

minimizes the cost of the transportation delivery schedule, the inventory policies for the customers,

and the dynamic purchasing decision for the producer. For this, we propose a generic solution

approach that iteratively solves MIPs and MDPs utilizing ideas of parameterized cost function
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approximations (Powell and Ghadimi 2022). A parameterized cost function approximation is a

method for solving stochastic dynamic decision problems by using a modified, parameterized deter-

ministic policy so that it better anticipates future uncertainty. We apply this idea to our static

transportation delivery schedule, i.e., we use a modified parameterized MIP to find a transporta-

tion delivery schedule that anticipates the impact of the dynamic purchasing decision. We evaluate

the dynamic purchasing decision by solving the resulting MDP via value iteration. Our approach

includes an efficient search method for setting the parameters in the modified parameterized MIP

by iteratively solving the modified MIP and the MDP. To the best of the authors’ knowledge, this

is the first generic approach that combines such static and dynamic decisions in the context of

inventory routing problems.

This paper makes the following contributions to the literature. First, by introducing and solv-

ing the SCIRP with supply uncertainty, we consider a new and emerging application in hydrogen

production and distribution that is relevant for an efficient transformation towards a green society.

Second, we generalize the existing literature on the SCIRP by considering both a cyclic transporta-

tion delivery schedule and stochastic supply. The extant literature typically considers only demand

uncertainty in non-cyclic settings (Adelman 2004, Kleywegt, Nori, and Savelsbergh 2004), sup-

ply uncertainty in non-cyclic settings (Alvarez et al. 2021), or do not consider supply uncertainty

(Sonntag, Schrotenboer, and Kiesmüller 2022, Raa and Aouam 2021, Malicki and Minner 2021).

Third, we introduce a generic solution approach based on jointly optimizing dependent static (MIP)

and dynamic (MDP) decisions utilizing ideas from parameterized cost function approximations.

Our approach finds high-quality solutions in low computation times. Moreover, our approach is

generic compared to the extant literature in which convex analysis and enumeration techniques

are used to solve or approximate dynamic problem decisions (e.g., Basten et al. 2015, Mulder, van

Jaarsveld, and Dekker 2019), our approach does not require such analysis or associated simplify-

ing assumptions. Fourth, we show on a set of new benchmark instances the importance of jointly

optimizing static and dynamic decisions, as it can lead up to cost savings of 65%. Finally, we apply

our approach to an extensive case study in the Northern Netherlands, where one of Europe’s first

Hydrogen Valleys (New Energy Coalition 2020) is realized, by analyzing how hydrogen should be

distributed in expert-reviewed future scenarios.

The remainder of this paper is organized as follows. In Section 2, we provide a review of literature

that relates to the SCIRP, such as the stochastic IRP, the cyclic IRP, and the production routing

problem. In Section 3, the problem narrative is given, followed by a MIP and an MDP model

definition for our joint optimization model. In Section 4, the proposed solution approach is narrated

including a new parameterized MIP model definition. In Section 5, the computational experiments

are presented. In Section 6, an expert-reviewed case study demonstrates the impact of various

problem elements for a number of future scenarios. In Section 7, we conclude our paper.
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2. Literature Review

Our study contributes to the green hydrogen energy literature and several research streams of the

inventory routing problem (IRP), which we discuss one by one. First, we discuss the distribution of

green hydrogen from an application perspective in Section 2.1. Next, we discuss the literature on

the stochastic IRP and cyclic IRP in Sections 2.2 and 2.3, respectively. We combine those elements

into the stochastic cyclic IRP in our paper for which related work is presented in Section 2.4. The

literature for combining multiple decision levels of a problem in a joint optimization approach is

discussed in Section 2.5. Finally, we discuss how our work differs from other, related, settings in

Section 2.6.

2.1. Green Hydrogen Energy Literature

Contributions in the green hydrogen literature typically take a high-level supply chain perspective.

To the best of the authors’ knowledge, there are no contributions that consider routing and supply

uncertainty as in our study. We review the most-related works in the following and refer the

interested reader to the review by Sgarbossa et al. (2022).

Almaraz et al. (2014) consider a case in France and minimize environmental and safety objectives

while deciding about centralized or decentralized production and storage of hydrogen and different

transportation modes. Welder et al. (2018) focus on multiple production technologies of green

hydrogen, providing a comparison of these technologies for a case study in Germany. None of these

works, however, consider inventory routing optimization as in our work.

Instead of considering multiple green-hydrogen production technologies, Woo et al. (2016) study

the green hydrogen supply chain by focusing solely on biomass production. They are concerned

with deciding the allocation of land for yielding multiple crops, which are then used as biomass to

produce hydrogen. The authors consider uncertainty in both supply and demand of hydrogen, and

touch upon transportation decisions too. They assume a fixed cost of using a transportation mode

and of operating it between two locations. Clearly, this does not grasp the importance of routing

optimization as the IRP does, and thus does not realistically represent green hydrogen distribution

costs as in our study.

2.2. Stochastic Inventory Routing Problem

The stochastic IRP (SIRP) is a collective name for IRPs considering at least one stochastic ele-

ment. Most often this concerns demand uncertainty, but some recent works also incorporate supply

uncertainty and lead time uncertainty. Another important distinction between SIRP models is

whether decisions are made dynamically or statically. Dynamic models are built typically upon

dynamic programming (DP) and Markov decision process (MDP) techniques, providing real-time

operational-level decisions. Static models typically focus on integer programming (IP) techniques,
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utilizing chance constraints to guarantee some operational performance metric, while focusing on

optimizing tactical-level decisions. Our work considers static and dynamic decisions while consid-

ering both supply and demand uncertainty. In the following, we only touch upon the most related

works, and otherwise refer the interested reader to the excellent review by Coelho, Cordeau, and

Laporte (2014b).

Some seminal works on dynamic SIRP models exist. Adelman (2004) models the SIRP as an

MDP by using approximated value functions with the aim to provide dynamic policies. They

formulate two primal-dual formulations, in which the dual feasible solutions are implemented to

achieve lower bounds on true value function values and to solve the optimality equations of the

MDP model. Kleywegt, Nori, and Savelsbergh (2002) also considers a dynamic SIRP and model

it as an MDP. The MDP model is provided for the general case where a route may consist of

multiple customers. The model is, then, solved by a dynamic programming approximation method

for only the direct delivery case, where a single customer is served within a route. Later, Kleywegt,

Nori, and Savelsbergh (2004) extend this work and solve the general case to near optimality by a

decomposition and an approximation of the value function. Bertazzi et al. (2013) study a SIRP with

demand uncertainty where each customer has to have a base-stock level equaling their inventory

capacity. The authors permit stock-outs with a penalty cost. They model the problem dynamically

for a finite time horizon and derive two solution methods. The first is a hybrid rollout algorithm

that combines a rollout approach with a deterministic MILP. The second is a branch-and-cut

algorithm with additional valid inequalities to solve the problem to optimality. A similar approach

is given in Coelho, Cordeau, and Laporte (2014a) in which short-term forecasts are injected in a

MILP, which is then solved on a rolling horizon basis.

Using integer programming techniques, some authors focus on static models of the SIRP. Yu

et al. (2012) model the SIRP with demand uncertainty with chance constraints to achieve a service

level while respecting a limited inventory capacity. They present a hybrid solution approach by

simplifying the model, linearizing nonlinear elements, and decomposing decisions. They show that

a large-scale problem of 200 customers may be solved to near optimality by their approach. Another

SIRP under demand uncertainty with service levels is studied by Crama et al. (2018), where the

product is assumed to be perishable. The authors assume no holding cost unlike most other IRPs,

but provide the formulation for the case with a holding cost. They create four solution methods for

their formulation of the problem with a finite time horizon and discuss the impact of each element

of the problem such as information, storage capacity, and shelf life.

Supply uncertainty has only recently started to gain attention in the SIRP. To the best of our

knowledge, Alvarez et al. (2021) is the only SIRP paper considering supply uncertainty. The authors

modeled the problem as a two-stage integer programming recourse for a finite time horizon with
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discrete probabilistic supply and demand distributions. In this model, a routing decision is selected

at the first step. The optimal transportation delivery schedule is, then, derived for all possible

combinations of supply and demand scenarios at the second step. Thus, the delivery decisions may

be given after the realization of a scenario, assuming that the decision maker knows the exact

amounts of supply and demand for all the periods in the time horizon. Our approach does not

rely on generating scenarios and utilizes a chance-constrained model instead. This allows us to

guarantee exact service levels for the customers.

2.3. Cyclic Inventory Routing Problem

The cyclic IRP (CIRP) is the branch of IRPs where the proposed routing solutions are cyclic, and

can thus be executed repetitively in an infinite planning horizon. The majority of this research area

provides fixed transportation delivery schedules to be implemented repetitively, which helps both

customers and producers to plan their (dependent) operations. Most of the literature considers

deterministic settings (see, e.g., Michel and Vanderbeck 2012, Diabat, Archetti, and Najy 2021).

Gaur and Fisher (2004) study a cyclic IRP to provide a weekly transportation delivery schedule

for a well-known supermarket chain in the Netherlands: Albert Heijn. The authors limit the number

of customers in each vehicle route by two, which is then improved by a heuristic that allows for more

customers in a single route. Their proposed solutions reduced costs by 4% during the first year of

implementation. Raa and Aghezzaf (2009) work on a CIRP by considering some real-life constraints

such as minimal cycle times and daily driving time restrictions. Their column generation-based

heuristic includes two main steps; clustering and assigning stock levels, and an insertion heuristic

for the routes.

Several studies provide heuristic approaches. Vansteenwegen and Mateo (2014) consider a single

vehicle CIRP. The aim is to maximize profits obtained from serving customers. Thus, not all

customers need to be delivered. The routing structure is similar to multi-vehicle IRPs since the

vehicle may do more than one trip at a period. The authors propose an iterative local search

metaheuristic for the problem. Another heuristic approach is discussed in Rau, Budiman, and

Widyadana (2018) for the CIRP with multiple objectives, minimizing costs and the emission of

vehicles. The authors consider both the distance and the weight of the vehicle to calculate emission

levels. They propose a variant of the particle swarm optimization algorithm to solve the problem,

which reduces the costs and the emission levels by 20% in their instances. In Bertazzi et al.

(2020), the authors solve a finite-time CIRP with a three-phase approach; combining heuristics

with branch-and-cut. The first phase applies a branch-and-cut algorithm. If the optimal solution

has not been reached within a preset time limit, a lower bound is taken and the second phase of

the heuristic approach is solved so that an upper bound is determined. Branch-and-cut is again

applied to solve the problem to optimality in the third phase by using the valid inequalities defined

by the first two phases.
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2.4. Stochastic Cyclic Inventory Routing Problem

The variant of the IRP that relates most closely to our work is the stochastic cyclic IRP (SCIRP),

where both customer demand uncertainty is considered while cyclic routing solutions are required.

Sonntag, Schrotenboer, and Kiesmüller (2022) work on a SCIRP with infinite supply and stochastic

demand with known stationary distributions. Their aim is to provide a cyclic replenishment policy

with a fixed number of periods in-between consecutive deliveries, where it is guaranteed that each

customer is replenished up to their base-stock level. They reformulate the chance-constrained model

into an integer programming model by using a Dantzig–Wolfe decomposition. The reformulated

model is solved to near optimality for mid- and large-size instances using branch-and-price. Our

static (transportation delivery schedule) decisions generalize the approach by Sonntag, Schroten-

boer, and Kiesmüller (2022) by adhering to a cyclic pattern of a finite number of days (for example

a week). Moreover, they do not consider supply uncertainty. Raa and Aouam (2021) study a similar

problem as Sonntag, Schrotenboer, and Kiesmüller (2022), and propose a population-based meta-

heuristic approach, by decomposing the problem into route design and fleet design stages. Finally,

Malicki and Minner (2021) address a SCIRP with a finite planning horizon. They allow variable

safety stocks and replenishment intervals for the first time in the SCIRP literature. This helps

to address non-stationary demand patterns. They model the problem as a mixed-integer chance

constraint problem, which is then solved with an adaptive large neighborhood search algorithm

that smartly utilizes lot-sizing heuristics.

Our study is the first study that addresses a SCIRP including supply uncertainty. In addition, we

detail dynamic purchasing decisions on how to mitigate supply uncertainty using an operational-

level MDP to include the associated costs in the design of our cyclic inventory routing design. We

propose a generic solution approach for this based on parameterized cost function approximation.

To the best of our knowledge, no such generic solution approach exists in the context of vehicle

routing or inventory routing.

2.5. Joint Optimization of Multiple Decision Levels

Combining decisions on different levels, without the need for using MDPs, is addressed by several

authors in various domains. Basten, Van der Heijden, and Schutten (2012) and Basten et al. (2015)

study a complex non-linear optimization problem in the context of maintenance optimization and

spare-parts stocking. The authors combine tactical-level maintenance decisions (a so-called Level

of Repair Analysis) with an operational-level spare-parts stocking strategy. In Basten, Van der

Heijden, and Schutten (2012), the problem is solved to optimality under stylized assumptions and

generating trade-off curves. Basten et al. (2015) provides a heuristic approach based on a feedback

mechanism where solutions to a lower-level optimization problem alter the coefficients of an upper-

level optimization problem. Finally, Mulder, van Jaarsveld, and Dekker (2019) work on maritime



Hasturk et al.: Stochastic Cyclic IRP with Supply Uncertainty
9

shipping by the combination of static and dynamic decisions. A convex analysis is also used in

their study to specify the operational-level decisions.

The genericity of our approach stands out when comparing it to this stream of literature. Our

approach is similar in the sense that we also rely on iteratively solving two models. These existing

works, however, optimize operational-level decisions within the context of a set of predefined rules

and policies (i.e., smart enumeration). Our generic approach evaluates and solves Markov decision

processes in each iteration to obtain state-dependent optimal decisions. It does not require for any

assumptions on the relationship between the MDP and the set-partitioning formulation since it

obtains a combined decision both for tactical-level static (MIP) and for operational-level dynamic

(MDP) levels.

2.6. Other Related Research

The production routing problem (PRP) concerns jointly optimizing lot sizing and vehicle routing.

Unlike IRPs with stochastic supply (as in our problem), PRPs plan the supply (i.e., the lot sizing)

based on the routing policy so that supply, inventory holding, and transportation costs are min-

imized. Studies are mostly based on heuristic multi-phase approaches, but there are a few exact

methods available. We only review the most important contributions in this area due to PRP’s

focus on discrete scheduling of production processes, and refer the interested reader to Adulyasak,

Cordeau, and Jans (2015b) and Neves-Moreira et al. (2019) for an overview of the complete field.

Regarding the multi-phase approaches, Adulyasak, Cordeau, and Jans (2014) work on a deter-

ministic PRP under a finite time horizon and propose an adaptive large neighborhood search

heuristic. This decomposition-based heuristic has two phases; initialization and improvement, where

a network flow subproblem is solved in the improvement phase. Adulyasak, Cordeau, and Jans

(2015a) use a similar two-phase construction to solve a stochastic PRP with demand uncertainty.

Benders decomposition is used to solve this problem to optimality, enhanced with additional valid

inequalities. Neves-Moreira et al. (2019) consider a multi-product PRP with time delivery windows.

The authors’ heuristic approach adds one more phase, thus having three phases named as; size

reduction, initial solution, and improvement. This decomposition method is tested in a case study

in a meat industry company, achieving a 20% cost reduction compared to the company’s policy.

Schenekemberg et al. (2021) introduce the two echelon PRP. The authors provide two exact solu-

tion methods; branch-and-cut and a parallel algorithm. The parallel algorithm provides previously

unknown optimal solutions for large-sized PRP instances with 50 customers, and is also found to

be efficient for the deterministic two-echelon multi-depot inventory routing problem.
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3. Problem Definition

Here we present the mathematical models for our stochastic cyclic inventory routing problem

(SCIRP) with supply uncertainty. We discuss three models; one for the tactical-level inventory

decision, one for the operational-level purchasing decision, and one for the joint optimization of

both levels. We start with the problem narrative in Section 3.1, where on a high-level the system

elements, the decisions to be taken, and the associated costs are explained. Afterward, we introduce

a MIP for the static, tactical-level inventory routing decisions in Section 3.2 and an MDP for the

dynamic, operational-level purchasing decisions in Section 3.3. The joint optimization problem that

formalizes the goal of the SCIRP is presented in Section 3.4. In Section 4, we provide our cost

function approximation approach including a parameterized MIP to solve the problem presented in

this section efficiently. Although our focus is on the distribution of green hydrogen, our underlying

modeling concept has wider applicability to other inventory routing settings with stochastic supply.

This includes settings where inventory availability at the warehouse is stochastic due to complex

dependent production planning processes or where inventory is shipped from external suppliers

that are subject to disruptions due to labor shortages or stochastic travel times. Nevertheless, each

of such examples would require small changes in the modeling. Therefore, we present the model in

terms of green hydrogen distribution to keep our exposition focused.

3.1. Problem Narrative

We consider a joint green hydrogen production and distribution system over an infinite discrete

time horizon that consists of cyclic repetitions of T periods (e.g., a week), where T is given. Every

period within the infinite time horizon corresponds to a cycle period t ∈ T := {1, . . . T}. A green

hydrogen producer receives a stationary stochastic supply from a renewable energy source at each

period. The producer uses the stochastic supply to replenish a given set of geographically dispersed

customers that each face stationary stochastic demand at each period. We define the node set

N 0 := {0}∪N , where 0 represents the producer and N := {1,2, . . . ,N} represents the customers.

The decisions comprise two dependent parts. Firstly, a tactical-level inventory routing decision is

made in the form of a periodic, routing solution that repeats itself every T periods over the infinite

time horizon. These routes are used for the replenishment of hydrogen from the producer to the

customers using capacitated vehicles. To design such a so-called transportation delivery schedule,

customers are grouped into fixed, mutually exclusive and collectively exhaustive clusters with an

associated vehicle route and a delivery schedule over the T periods. Thus, each customer is part of

exactly one cluster. The delivery schedule encodes at which of the T periods the associated vehicle

route is performed. This unique vehicle route for a cluster is used for all deliveries of the cluster

over the cycle. Customers are delivered at most once every period. We assume that customers’
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inventory is replenished according to a base-stock policy subject to a service level constraint at

each delivery period. The customer demand is back-ordered until the next delivery period in a

case of stock-out at the customer’s location. Note, the base-stock level set for each delivery period

is part of our decision. As a consequence of the base-stock levels set and stochastic demand, the

amount of inventory on each vehicle route is stochastic. The proposed clustering of customers and

associated transportation delivery schedule transforms individual stochastic customer demands

into T independent demand distributions for each cycle period for the producer. See Section 3.2

for the details.

Secondly, the producer faces a dynamic, operational-level purchasing problem to manage, at each

period, the inflow of stochastic hydrogen supply to ensure the feasibility of the outflow of demand

as depicted by the transportation delivery schedule outlined above. The producer observes how

much demand needs to be replenished by the customers at each period. The producer has access

to a capacitated storage unit to keep hydrogen in stock to anticipate the fulfillment of demand in

later periods. Furthermore, the producer is connected to a hydrogen market at which it can buy

hydrogen to meet customer demand, and sell hydrogen for an extra profit. We ensure in this way

that the producer always replenishes inventory up to the decided base-stock policies (as part of

the tactical-level decision) at the customers. See Section 3.3 for the details.

The goal of the SCIRP is to minimize the total expected cycle costs of the combined tactical-level

and operational-level decisions. This includes transportation costs (fixed and variable), inventory

holding costs at customers, emergency shipment costs (in case of insufficient vehicle capacity),

and hydrogen buying and selling costs. The tactical-level MIP and the operational-level MDP are

discussed in Sections 3.2 and 3.3, respectively. The ultimate framework of our solution approach

is given in Figure 3. Note that this involves a cost-function approximation (see Section 4) based

upon the problem-defining MIP that we introduce below.

3.2. The Tactical-Level Inventory Routing

We propose a set-partitioning model for the tactical-level inventory routing decisions. We consider

a set of clusters R, where each cluster r ∈ R describes a set of customers Nr ⊆ N , the shortest

vehicle route among these customers, the set of delivery periods Tr ⊆ T , and a base-stock level

at each delivery period for each customer. We refer to these delivery periods and the associated

base-stock levels as a transportation delivery schedule of a cluster. The tactical-level inventory

routing decision, then, boils down to selecting clusters with mutually exclusive customers that

jointly partition the customer set. An overview of notation introduced in this section is given in

Table 1.

We assume a base-stock policy at each delivery period t ∈ Tr for each cluster r ∈ R with asso-

ciated transportation delivery schedule, covering the demand with service level α until the next
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Table 1 Overview of notation for the tactical level

Sets:
T set of cycle periods
Tr set of delivery periods of cluster r
N set of customers
N 0 set including all customers and the producer
Nr set of customers in cluster r
R set of clusters
R set of selected clusters in a solution

Indices:
t, ℓ indices for cycle periods
T number of cycle periods
i index for nodes
N number of customers
r index for clusters

Parameters:
βi
r parameter that equals 1 if cluster r contains customer i, 0 otherwise
dr the vehicle route length of cluster r
ISit

r random variable of inventory position on customer i of cluster r at start of period t
IEit

r random variable of inventory position on customer i of cluster r at end of period t
qitr random variable of shipped units to customer i of cluster r at period t
Q vehicle capacity
U customer inventory capacity
α target service-level
γ target probability that the vehicle capacity is not exceeded
µi mean of the supply/demand distribution of node i
σi standard deviation of the supply/demand distribution of node i
Fin cumulative distribution function of the demand faced by customer i during n periods
Din random variable of the cumulative demand faced by customer i for n consecutive periods
zα z-score of α
ntr the number of periods until the next replenishment for a delivery period t of cluster r
mtr the number of periods since the previous replenishment for a delivery period t of cluster

r

Decision variables:
xr binary decision variable that equals 1 if cluster r is in the solution, 0 otherwise

Cost components:
ctr cyclic transportation cost of cluster r
chr expected cyclic holding cost of cluster r
cer expected cyclic emergency shipment cost of cluster r
cr expected cyclic tactical cost of cluster r
W fixed transportation cost of a replenishment
w variable transportation cost per distance
h holding cost per unit per period
e emergency shipment cost per unit
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delivery period for the customers in Nr. For a delivery period t and a cluster r, let ntr be the num-

ber of periods until the next delivery and let mtr be the number of periods since the last delivery.

We assume the replenishment occurs instantaneously at the start of the period. Let Fin denote the

cumulative distribution function of the demand faced by customer i ∈ N during n periods. We

assume demand (and later supply) are continuous random variables. We set the base-stock level

equal to F−1
i(ntr)

(α) to achieve a service level α at each customer level, i.e., the critical fraction of

demand distribution over the next ntr periods at customer i ∈Nr at delivery period t. For exam-

ple, if demand is normally distributed with mean µi and standard deviation σi, F
−1
i(ntr)

(α) equals

ntrµi + zασi
√
ntr where zα is the z-score associated with the (1−α) quantile.

To properly define the inventory dynamics at each customer, we introduce the random variable

ISit
r representing the inventory position at customer i∈Nr at the start of each period t of cluster

r ∈ R. Similarly, let the random variable IEit
r representing the inventory position at customer

i∈Nr at the end of each period t of cluster r ∈R. A holding cost of h is paid per unit per period,

where the unit is calculated as the average of the start and the end on-hand inventory of a period.

Let qitr := F−1
i(ntr)

(α)− IEi,t−1
r be the stochastic quantity to be shipped to customer i as part of

cluster r on delivery day t, and qitr := 0 for non-delivery days. For the example normal distribution

case, IEi,t−1
r ∼N(zασi

√
mtr,mtrσ

2
i ) and thus qitr ∼N(ntrµi+zασi(

√
ntr−

√
mtr),mtrσ

2
i ) on delivery

day t. Then, the stochastic total quantity
∑

i∈Nr
qitr to be replenished on delivery day t by cluster r

potentially exceeds the vehicle capacity Q. An emergency shipment is called in this case to deliver

the remaining amount at a unit penalty cost e. Finally, the fixed transportation cost is W per

replenishment, and the variable transportation costs equal w · dr, where dr is the length of the

shortest route among the customers in cluster r.

The cyclic cluster cost cr for each r ∈ R consists of the deterministic fixed and variable trans-

portation costs (ctr), the expected inventory holding costs at its customers (chr), and the expected

costs of emergency shipments (cer). The cluster cost cr is then defined by

cr = ctr + chr + cer (1)

=
∑
t∈Tr

(W +w · dr)+h
∑
i∈Nr

t+ntr−1∑
ℓ=t

E
[
1

2
((ISiℓ

r )
+ +(IEiℓ

r )
+)

]
+ e ·E

(∑
i∈Nr

qitr −Q

)+
 , (2)

where (·)+ denotes max(0, ·). The first term of Equation (2) represents the cycle transportation

cost for a cluster consisting of fixed and variable cost. The second term represents the expected

cycle holding costs for a cluster by taking the expectation of the average on-hand inventory, and the

third term denotes the expected cyclic emergency shipment costs. Emergency shipments involve

only small quantities, and aligning with the insights provided by our industry practitioners, they

only include a variable (though higher) cost.
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Each cluster r ∈R is subject to three constraints. First, each customer has only a limited capacity

U for the storage of hydrogen, so F−1
i(ntr)

(α) ≤ U should be satisfied for all r ∈ R, i ∈ Nr, t ∈ Tr.

Second, by setting base-stock levels equal to F−1
i(ntr)

(α), we implicitly impose that the probability

of having no back-orders is at least α for each customer i in cluster r on period t.

P
{
IEit

r ≥ 0
}
≥ α ∀r ∈R, i∈Nr, t∈T . (3)

Furthermore, Constraint (4) limits the probability that vehicle capacity is not sufficient (i.e., the

probability an emergency shipment occurs) with at most 1− γ for each delivery of each cluster

r. The chance constraint helps to limit the size of the cluster set R, which is computationally

convenient.

P

{∑
i∈Nr

qitr ≤Q

}
≥ γ ∀r ∈R, t∈Tr. (4)

By setting the base-stock level as F−1
i(ntr)

(α), we act as if we have a classic single-item inventory

system with back-orders and lead time equal to the number of periods that we need to cover till the

next replenishment, and we act as if this repeats continuously. This is optimal in case the number of

periods between deliveries is equal (see also Lemmas 1-3 in Sonntag, Schrotenboer, and Kiesmüller

(2022)). However, in practice, this is often not possible. For example, if the cycle {1, . . . , T} is a

week and two delivery days are selected, the number of days between consecutive deliveries is not

equal. Thus, if ntr and mtr differ, we obtain a slightly higher service level than α. The following

remarks make this explicit.

Remark 1 (Order-size distribution). We approximate qitr :=
(
F−1

i(ntr)
(α)− IEi,t−1

r

)+

as

qitr := F−1
i(ntr)

(α)−IEi,t−1
r in this paper. Let t∈ {1, . . . , T} be a delivery period of customer i, assume

mtr >>ntr and T is sufficiently large, and assume only 2 delivery periods are selected for customer

i within the cycle {1, . . . , T}. In such a case, it is non-negligible that the observed on-hand inventory

on period t exceeds the set base-stock policy (i.e., IEi,t−1
r >F−1

i(ntr)
(α)), and accordingly, no order

will be placed at the producer. That is, the order size distribution at time t will have a significant

probability mass at 0.

Remark 2 (Optimality of base-stock policy). Remark 1 deduces that setting base-stock

levels as we do might result in overshooting the set base-stock levels. If this is the case, it will

result in a too-high service level (i.e., exceeding α) at a customer. This follows trivially by realizing

that the total safety stock increases if we replenish more often (i.e., demand pooling) during the

cycle. Thus, Constraint (3) is respected but not necessarily binding in our experiments. However,

preliminary experiments have shown that these effects were not significant from a computational

perspective. That is, it will not lead to different routing decisions. We, therefore, ignore this phe-

nomenon in the remainder of this paper.
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Remark 3 (On the emergency shipment cost). The approximation on qitr overshoots

emergency shipment costs. But while approximation error is seen on cases when mtr >>ntr, emer-

gency shipment costs are significant when mtr << ntr. As also the preliminary experiments have

shown, this phenomenon almost never happens, and thus ignored in the remainder of the paper.

In what follows, we detail the calculation of holding costs. In line with the previous remarks,

these expressions are thus approximations of the actual cost, but preliminary experiments also

show that the approximations are good enough.

Recall that the holding cost is calculated by the average inventory over the cycle periods, assum-

ing the demand is observed uniformly throughout a period. Let Din be the random variable for the

cumulative demand faced by customer i during n periods. On (t+ ℓ)th period (ℓ≤ ntr), after the

last delivery on cycle period t, the average on-hand inventory on customer i with the base-stock

policy is

1

2

(
E
[(
F−1

i(ntr)
(α)−Diℓ

)+
]
+E

[(
F−1

i(ntr)
(α)−Di,ℓ+1

)+
])

. (5)

For the example of normally distributed demand, we have F−1
i(ntr)

(α) − Diℓ ∼ N ((ntr − ℓ)µi) +

zασi
√
ntr, ℓσ

2
i ). From this, we can calculate the expected holding cost for cluster r as follows:

chr = h
∑
t∈Tr

∑
i∈Nr

t+ntr−1∑
ℓ=t

E
[
1

2
((ISiℓ

r )
+ +(IEiℓ

r )
+)

]
(6)

= h
∑
t∈Tr

∑
i∈Nr

ntr−1∑
ℓ=0

1

2

(
E
[(
F−1

i(ntr)
(α)−Diℓ

)+
]
+E

[(
F−1

i(ntr)
(α)−Di,ℓ+1

)+
])

. (7)

In Equation (7), we calculate the average inventory per period between the replenishments and

penalize that with the holding cost. The expectations can be made explicit by standard techniques

and thus (7) can be evaluated exactly.

The tactical-level inventory routing decision is, then, obtained by solving a set-partitioning

model. Let βi
r be equal to 1 if cluster r contains customer i, and 0 otherwise. Let xr be a binary

decision variable equaling 1 if cluster r is selected and 0 otherwise. The tactical-level inventory

routing decision is then obtained by solving:

min
∑
r∈R

crxr (8)

s.t
∑
r∈R

βi
rxr = 1 ∀i∈N , (9)

xr ∈ {0,1} ∀r ∈R. (10)

The objective is to minimize the expected cyclic costs of selected clusters. Constraints (9) ensure

each customer is contained in exactly one cluster. This model relies on a full enumeration of the
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cluster set R. We detail how we do this in Section 4. The solution to the tactical-level inventory

routing problem comprises a set of selected customer clusters, which we will denote by R := {r ∈
R | xr = 1}. As the tactical-level inventory routing model ignores supply uncertainty faced by the

producer, the next section will introduce a dynamic purchasing model for the producer that takes

as input the selected set of clusters R to ensure the feasibility of tactical-level inventory routing

decisions in operational settings. Finally, we remark that our MIP model can easily be extended

by other side constraints, for example on the number of clusters per day. This might help to reduce

the impact of supply uncertainty for some particular parameter settings, but this will remain

rather dependent on the parameter values and instance characteristics and reduces the genericity

of our model and approach. Other appropriate side constraints, however, can easily be added to

the formulation if needed in some given real context.

3.3. The Operational-Level Purchasing

The producer needs to ensure at each period that enough hydrogen is available to satisfy customer

demand as imposed by the transportation delivery schedules of the selected clusters. The trans-

portation delivery schedule is the result of the tactical-level inventory routing decision, as specified

in Section 3.2. The producer has a maximum capacity to store hydrogen, and it can buy and sell

hydrogen at fixed market prices at the hydrogen market. We model this dynamic purchasing deci-

sion of how much hydrogen to buy and sell at each period, and thus how much hydrogen to keep in

stock at the producer, as an MDP. We first define the order of events at each period, after which

we provide the MDP formulation. An overview of the notation introduced in this section is given

in Table 2.

At each period, we first observe the current hydrogen inventory position and the customer

replenishment within the clusters that are delivered in that period (as given by the tactical-level

decision). Hereafter, the producer buys or sells hydrogen from the market, and we assume this

arrives instantaneously (e.g., overnight) at the producer. Finally, the customers are replenished. A

graphical overview is presented in Figure 2.

Period starts. (s1)

Hydrogen supply at pro-
ducer is observed (O−

t ).

Observe customer replen-
ishment of upcom-
ing period (O+

t ).

Hydrogen buy
and sell decision.

Bought and sold hydro-
gen is processed.

Customers are replenished.

Period ends.

(s2)

Figure 2 Timeline of a period.

The clusters R := {r ∈ R | xr = 1}, determined by the tactical-level inventory routing problem,

partly define the MDP formulation. These clusters impose at each period t a total stochastic
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Table 2 Overview of notation for the operational level

Sets:
A (s2) set of admissible buying and selling decisions on state s2
Φt set of net outflow levels of period t
Π(x) set of feasible dynamic purchasing policies on tactical-level solution x

Indices:
ω1, ω2 indices for state inventory positions
s1, s2 indices for states
ϕt index for net outflow levels of period t

Parameters:
Ot random variable of net outflow quantity of period t
O+

t random variable of replenishment quantity of period t
O−

t random variable of supply quantity of period t
U producer inventory capacity

Decision variables:
q1, q2 amount of purchased and sold inventory
x tactical-level inventory routing solution
π(x) the policy of dynamic purchasing problem, depending on tactical solution x

Cost components:
c(ω2, q1, q2) cost of decision (q1, q2) with inventory position of ω2

v(s1), y(s2) future costs of states
b1, b2 variable buy/sell costs of the hydrogen
K1,K2 fixed costs of purchases from the outside market
C(π(x)) expected cyclic purchasing cost of the policy π(x)

replenishment quantity O+
t that the producer needs to satisfy due to the base-stock policies set

at the customers associated with the clusters R, where O+
t =

∑
r∈R

∑
i∈Nr

qitr . In addition, the

producer faces stochastic supply O−
t of green hydrogen from renewable energy sources at each

period t. We assume that the distribution of O−
t is known. Let Ot be the net stochastic outflow

quantity, i.e., Ot :=O+
t −O−

t .

We consider two states in each period in the MDP. First, the state s1 is observed before the

realization of the net stochastic outflow quantity Ot, and consists of the period t ∈ {1, . . . , T} and

the on-hand inventory ω1 ∈ Z≥0. The state s2 is observed after the realization of Ot, and consists

of the period t and the inventory position ω2 ∈ Z. The state s1 = (t,ω1) transitions to the state

s2 = (t,ω2), where ω2 = ω1 −Ot. In state s2 = (t,ω2), we transition to state s1 = (t+1 mod T,ω1)

by taking hydrogen buy (q1) and sell (q2) decisions, where ω1 = ω2 + q1 − q2.

The set of admissible buying (q1) and selling (q2) decisions is defined by

A (t,ω2) =
{
(q1, q2) | 0≤ ω2 + q1 − q2 ≤U,q1 ≥ 0, q2 ≥ 0

}
. (11)
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This means that we cannot sell more than our on-hand inventory, and we cannot buy more than

fits in our inventory capacity at the producer U . Buying hydrogen comes at a unit price of b1, and

selling hydrogen comes at a unit price of b2 < b1. It is important to highlight that since b1 and

b2 are fixed, speculative motives for buying or selling in the market are eliminated. Next to these

costs, the producer incurs a fixed ordering cost each time the producer decides to buy from the

external source (K1) and a so-called fixed emergent purchase cost (K2). The latter cost reflects the

case when the inventory is insufficient to meet today’s customer demand, i.e. when ω2 < 0. The

difference with the fixed ordering cost is that the producer may choose to keep a safety stock, to

ensure that there is sufficient inventory to meet today’s customer demand with a higher probability.

According to these costs, the costs of taking decision (q1, q2) is defined as:

c(ω2, q1, q2) =K1δ1 +K2δ2 + b1q1 − b2q2, (12)

where δ1 = 1 if q1 > 0 and 0 otherwise, and δ2 = 1 if ω2 < 0 and 0 otherwise.

For states s1 and s2, we let v(s1) and y(s2) be the value functions that represent the expected

future cost on the infinite time horizon. We assume that ω1, ω2, and Ot are discretized with Φt,

the finite discrete support of Ot. Let P{Ot = ϕt} denote the probability of having a net outflow

quantity of ϕt. Then, the transitions from state s1 to s2, and vice versa, is recursively defined by

the following set of equations:

y(t,ω2) = min
(q1,q2)∈A (s2)

{
c(ω2, q1, q2)+

∑
ϕt∈Φt

P{Ot = ϕt}y(t+1 mod T,ω2 + q1 − q2 −ϕt)
}
, (13)

i.e.,

v(t,ω1) =
∑
ϕt∈Φt

P{Ot = ϕt}y(t,ω1 −ϕt), (14)

y(t,ω2) = min
(q1,q2)∈A (s2)

{
c(ω2, q1, q2)+ v(t+1 mod T,ω2 + q1 − q2)

}
, (15)

We employ Equations (14) and (15) instead of Equation (13) since they offer greater ease with

computations. In Equation (14), we let the value v(t,ω1) being in state s1 = (t,ω1) be the expected

value of transitioning to states s2 = (t,ω2) under the probability measure P based on the net outflow

Ot. In Equation (15), we select buy and sell decision in order to minimize the expected future cost

of the operational-level decisions. This system of equations can easily be solved by methods such

as value iteration after imposing an appropriate discretization of the inventory levels.

Summarizing, depending on the tactical-level inventory routing solution x and associated with

x the transportation delivery schedule imposed by the selected clusters R, we define Π(x) as the

set of all feasible policies of the MDP. The actions associated with the minimum values of y(t,ω2)

define the optimal dynamic policy for the purchasing decisions of the producer, denoted as π(x).

Upon that, we define C(π(x)) as the expected cycle costs of the producer’s buying and selling

decisions.
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3.4. The Joint Optimization Problem

The goal of the SCIRP is to determine both a transportation delivery schedule x (and thus R) and

a dynamic policy π(x) for the producer’s purchasing decisions that minimizes the total expected

cost. The following optimization problem reflects these joint decisions:

min
∑
r∈R

crxr +C(π(x)) (16)

s.t
∑
r∈R

βi
rxr = 1 ∀i∈N , (17)

π(x)∈Π(x), (18)

xr ∈ {0,1} ∀r ∈R. (19)

Here, Constraint 17 ensures that the customer clusters are selected in such a way that each cus-

tomer is assigned to exactly one cluster. Constraint 18 defines the operational-level purchasing

problem for the selected clusters. We provide an illustrative problem instance of the SCIRP and

a feasible solution in Appendix A, which details all the aforementioned elements of our problem.

In the next section, we introduce a generic approach using ideas from parameterized cost function

approximations that balances the transportation delivery schedules of multiple clusters and thus

decrease the total expected cycle cost in the SCIRP.

4. Parameterized Cost Function Approximation Approach

The joint optimization problem is highly non-linear. The outcome of the tactical-level decision (x,

the transportation delivery schedule) determines the state, action, and transition space of the MDP

underlying the operational-level dynamic purchasing decisions. However, for a fixed transportation

delivery schedule we can easily obtain the optimal dynamic purchasing decisions by solving the

underlying MDP to optimality via value iteration. In this section, we introduce a parameterized

cost function approximation (CFA) approach to handle the high complexity of the problem and

improve upon solutions that ignore the relationship between the dynamic purchasing decision and

the transportation delivery schedule. Our approach is based on iteratively solving a parameterized

mixed-integer programming model to obtain a transportation delivery schedule and subsequently

solving an MDP for the dynamic purchasing decision, see Figure 3.

Overall, this approach has various benefits. Firstly, by decomposing the approach into a MIP and

an MDP part, we can rely on commercial MIP solvers and value iteration, easing the computational

burden of our approach. Secondly, we observe in preliminary experiments that balancing the outflow

from the producer on cycle periods yields lower costs for the dynamic purchasing decision in general.

For example, overlapping deliveries in the same period result in larger variances of the net outflow

from the producer, resulting in more purchasing costs from the external supplier (see Appendix
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Figure 3 The framework of our approach.

A). Thus, we can steer the transportation delivery schedules by parameterizing the set-partitioning

model so that the expected cost of the combined tactical and operation-level decisions is reduced.

The remainder of this section is structured as follows. Firstly, we will explain the idea behind our

approach and present the modified set-partitioning model. Secondly, we discuss how we efficiently

enumerate customer clusters to populate the modified set-partitioning model. Thirdly, we detail

how we numerically solve the MDP that is associated with the dynamic purchasing decision. Finally,

we introduce an efficient algorithm to search through the parameter space of our CFA approach

by iterative solving the modified set-partitioning problem and MDP effectively.

4.1. Modified Set-Partitioning Model

The modified set-partitioning model is subject to two parameters, η1 ≥ 0 and η2 ≥ 0, that mod-

ify the objective function by introducing a cost that depends on the combination of selected

clusters and their transportation delivery schedules. The modified objective function consists of

three parts. First, we minimize the expected cyclic tactical-level costs
∑

r∈R crxr, similar as in the

set-partitioning model (8)-(10). Secondly, we introduce decision variables M1t and M2t and scale

them with the parameters η1 and η2 and add this to the objective function, i.e., η1
T

∑
t∈T M1t +

η2
T

∑
t∈T M2t. The decision variables penalize features of the combined selection of clusters for the

transportation delivery schedule (i.e., the tactical-level decision). We select these features as the

deviations between cycle periods in terms of the mean and the variance of the demand of the

selected clusters (see Constraints (22) and (23)). The modified set-partitioning model is given by:

min
∑
r∈R

crxr +
η1
T

∑
t∈T

M1t +
η2
T

∑
t∈T

M2t (20)

s.t
∑
r∈R

βi
rxr = 1 ∀i∈N , (21)

−M1t ≤
∑

t′∈T

∑
r∈R ∆t′

r xr

T
−
∑
r∈R

∆t
rxr ≤M1t ∀t∈T , (22)
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−M2t ≤
∑

t′∈T

∑
r∈R Λt′

r xr

T
−
∑
r∈R

Λt
rxr ≤M2t ∀t∈T , (23)

xr ∈ {0,1} ∀r ∈R, (24)

M1t,M2t ≥ 0 ∀t∈T . (25)

In Constraint (22), ∆t
r is the expected demand at delivery period t of cluster r, and 0 otherwise;

i.e., ∆t
r := E

[∑
i∈Nr

qitr
]
. Thus, (

∑
t∈T

∑
r∈R ∆t

rxr)/T is the average demand per period over the

cycle. This constraint is defined for each cycle period, and we set the deviation from the mean

demand equal to M1t for each period. Similarly, Constraint (23) aims to minimize the deviation

per period of the variance of the customer demand generated by the customer clusters. Here, Λt
r

is the variance of the demand of cluster r at delivery period t, i.e., Λt
r := Var

[∑
i∈Nr

qitr
]
, and M2t

is set equal to the deviation from the average demand variance per period t.

In our SCIRP, the modified set-partitioning model creates a balance in the demand that the

producer faces, which might lead to lower costs of buying or selling hydrogen in the dynamic

purchasing decision. The decision maker can select higher values for η1 and η2 and the model

automatically creates replenishment schemes that balance the demand over the periods in the cycle.

Our experiments indeed confirm that increasing η1 and η2 increases the costs associated with the

tactical-level while it decreases the costs of purchasing from the external supplier in general.

Finally, we like to stress our presented approach is fairly general. The characteristics we select for

the SCIRP (demand and variance variability) are valid for various types of demand distributions of

customers. Furthermore, initial experiments have shown that alternative penalizations regarding,

for example, the demand variances per period, lead to similar outcomes, which offers opportuni-

ties to tailor our approach more specifically in case other problem settings are studied. Of course,

without a known demand distribution creating tactical-level decisions on its own becomes much

more complex. Nevertheless, assuming a method exists to derive tactical-level decisions, our mod-

eling strategy provides a simple but elegant way to connect this to the quality of operational-level

decisions. This even surpasses the applications we study in this paper.

4.2. Populating the Set-Partitioning Model

The modified set-partitioning model requires as input the customer clusters, their costs, and asso-

ciated decisions such as the base-stock policy and delivery periods. In this section, we provide an

algorithm that recursively finds all the feasible customer clusters that are candidates to be selected

in an optimal solution. Let R be the set of customer groups. Each customer group r ∈R is defined

by i) a set of customers, ii) the shortest vehicle route among the customers in r, iii) the base-stock

policy to meet the predefined service-level α for each customer i∈Nr , and iv) the delivery periods

in the cycle.
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The algorithm works as follows. First, we compute all the base-stock levels required for covering

demand n periods ahead, F−1
in (α). Next, we enumerate all potential customer clusters assuming

that we deliver them at each period, i.e., a full transportation delivery schedule. Customers are

recursively added to clusters until Constraint (4) is violated. For each feasible customer cluster

assuming a full transportation delivery schedule, the algorithm then checks the feasibility of all

transportation delivery schedules and calculates the relevant parameters including costs and the

penalized features in the modified set-partitioning model. The pseudo-code of the algorithm is

given in Algorithm 1 in Appendix B.

4.3. Obtaining Optimal Dynamic Purchasing Decisions

We solve the modified set-partitioning model subject to the enumerated cluster set R given param-

eters (η1, η2). The tactical-level decision, x, is then input for the MDP that describes the dynamic

purchasing decisions. We use value iteration (see, e.g., Puterman 2014) to solve the MDP part.

The obtained policy is simulated to derive the relevant cost components.

4.4. Line Search on the Parameterized CFA

Our final approach for solving the SCIRP iterates between solving the modified set-partitioning

model with given (η1, η2) and evaluating the associated optimal dynamic purchasing decisions. In

this section, we provide an efficient search algorithm in the (η1, η2) space to find the values of (η1, η2)

that results in the joint solution of minimum cost. We make use of the observation in preliminary

experiments that the total cost function is typically unimodal in η1 and η2. Using this idea, we

propose a line search on the parameterized CFA where we iteratively update either η1 or η2 in each

iteration. The algorithm, which we call Line Search, is provided in Algorithm 2 in Appendix B.

The algorithm starts by initializing (η1, η2) = (ϵ, ϵ), with an arbitrarily small positive value to

activate the CFA approach, and then iteratively updates either η1 or η2. We first incrementally

increase the parameter η1 until the expected cycle cost is non-increasing, or until the predetermined

upper bound of η1 is reached. The algorithm, then, fixes η1 and incrementally increases η2 until

the same stopping criteria are met. Three different operations are executed on each selected pair of

parameters, which define a feasible solution for the corresponding pair of parameters and yield an

expected cycle cost of the feasible solution. First, the MIP model of parameterized CFA is solved.

Second, the corresponding MDP upon the tactical-level solution is solved. Thirdly, the optimal

policy of MDP is simulated to derive the costs of the MDP policy. Among the solutions that are

obtained during the process, the one with the minimum expected cycle cost is selected as the best

solution.
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5. Computational Experiments

This section evaluates our Line Search method in terms of solution quality and computation time.

The experiments are performed using an Intel Core i7-10750H CPU (2.6 GHz) with 16GB of RAM.

The algorithms are implemented in C++20 in combination with Gurobi 9.1.1. We first describe the

base system of our test instances in Section 5.1. Next, our approach is compared to a step-by-step

solution in Section 5.2; where the transportation delivery schedules are obtained assuming infinite

supply, thus ignoring the impact and cost of the dynamic purchasing decisions similar to the extant

literature. Afterward, we compare our Line Search method with a full parameter grid search on

medium-sized instances in Section 5.3.

5.1. Base System

We consider a base system given in Table 3. In each instance, 15 customers are randomly allocated

into a region of [0,10]× [0,10]. For each customer, we assign the mean demand in the range of

[100,400] kg per period, where the mean supply equals the total mean demand. The standard

deviation of customer demands is randomized in the range of [0.025,0.05] times the mean demand.

For the producer, the standard deviation equals 0.15 times the mean supply.

Table 3 Parameter set of the base system.

W w e Q h α γ U C K1 K2 b1 b2

100 20 10 1000 0.05 0.95 0.9 1000 4500 3000 15000 25 2

We discretize the continuous sets of inventory levels to the nearest integer values. As the value

iteration algorithm provides ϵ-optimality, we conducted preliminary experiments and set ϵ = 0.1

to get the right balance between computational efficiency and the quality of the solution. That is,

the obtained solutions will not significantly improve for smaller values of ϵ. After we obtain the

ϵ-optimal solutions of the value iteration, we simulate the output policy with 30 million periods to

derive associated costs.

5.2. Comparison of Our Approach with the Step-By-Step Solution

The SCIRP in previous research is studied while assuming an infinite supply. To compare our

Line Search method with the literature, we solve our benchmark instances also by a step-by-step

solution. This ignores the relation between the tactical and operational-level decisions, and thus

solely optimizes the static, inventory-routing decisions. The resulting solution is simply evaluated

in the associated MDP to obtain the cost of the optimal dynamic purchasing decision.

The results are given in Table 4. Upon the base case, we vary the number of customers between

10, 15, and 20, the cycle length between 7 and 10, the vehicle capacities between 800 and 1000,



Hasturk et al.: Stochastic Cyclic IRP with Supply Uncertainty
24

and demand uncertainty levels between ‘L’ and ‘H’. A demand uncertainty of L is the base case,

while for H we randomize the customer demands in the range [0.02,0.1] times the mean demand.

For each scenario, 20 instances are generated and solved, where #rep is the number of solutions

that are solved within the set memory limit. ∆(%) is the increase in cost of the step-by-step

solution compared to our approach. For both our approach and step-by-step, the average values of

the objective function values and the solution times are reported. For our Line Search approach,

we also report the average number of iterations found on the search algorithm (#iter), where the

solution times of Line Search are given as the average of each iteration of the algorithm.

Table 4 Performance of the Line Search compared to the step-by-step solution.

∆(%) Step-By-Step Line Search

N T Unc. Q #rep avg. max objMIP objMDP timeMIP timeMDP objMIP objMDP timeMIP timeMDP #iter

10 7 L 800 20 11.0 48.3 10218 7642 0.03 0.14 10338 5809 9.5 0.15 11.3
1000 20 15.5 62.6 8657 8184 0.05 0.13 8776 5870 7.0 0.15 9.7

H 800 20 8.0 27.9 11216 7907 0.03 0.12 11315 6404 3.1 0.13 8.7
1000 20 8.8 44.3 9446 7966 0.03 0.13 9582 6496 7.2 0.14 8.8

10 L 800 19 17.4 51.2 9932 8716 0.17 0.16 10054 5889 25.7 0.22 11.5
1000 19 32.6 191.5 8155 10423 0.35 0.14 8302 5805 84.9 0.22 15.5

H 800 18 18.5 72.6 11327 10059 0.14 0.15 11443 6671 23.6 0.19 10.7
1000 16 19.5 82.2 9388 9761 0.26 0.15 9547 6543 85.8 0.20 10.0

15 7 L 800 20 2.6 10.5 14942 8619 0.04 0.20 15049 7914 5.2 0.19 10.1
1000 20 4.6 12.7 12520 9103 0.09 0.19 12655 8023 19.1 0.19 10.0

H 800 20 2.0 8.2 16574 9110 0.05 0.18 16656 8530 5.4 0.17 8.2
1000 20 5.2 19.4 14010 9712 0.09 0.18 14107 8539 24.7 0.18 7.9

10 L 800 19 6.7 18.5 15096 9692 0.44 0.24 15164 8020 119.3 0.26 11.5
1000 18 12.3 40.6 12190 10604 1.11 0.21 12305 8055 115.6 0.25 11.6

H 800 16 5.3 12.2 16656 10057 0.32 0.25 16723 8656 109.2 0.24 10.7
1000 14 8.0 39.5 13601 10238 0.94 0.24 13725 8422 50.9 0.25 9.1

20 7 L 800 20 1.1 4.2 19354 10246 0.11 0.21 19468 9822 38.3 0.19 9.5
1000 19 3.0 10.2 16251 10802 0.25 0.18 16311 10003 80.8 0.18 8.1

H 800 20 0.9 4.3 21406 10728 0.10 0.20 21480 10361 28.0 0.18 8.5
1000 20 2.1 5.6 17861 11057 0.20 0.21 17963 10356 98.7 0.19 7.3

10 L 800 16 4.7 15.1 19302 11847 0.99 0.28 19360 10384 644.5 0.27 12.8

We observe a sharp decrease in the cost of the dynamic purchasing decision in all solutions at the

expense of only a slight increase in transportation delivery schedule costs when using Line Search

compared to the step-by-step solution. As expected, the Line Search solutions are strictly better

than the step-by-step solution. The average differences range between 32.6% and 0.9%, while the

maximum difference is 191.5%. This represents a 191.5% increase in costs when using the step-

by-step solution compared to our approach. For an increasing number of customers, we see that

the differences reduce when comparing the average and the maximum cost difference between Line

Search and the step-by-step solution (∆(%)). However, the Line Search appears to be very robust

compared to the step-by-step solution, indicated by the significant maximum differences for the

largest instances. Furthermore, we observe that the solution time of the MDP does not depend on

the number of customers, whereas the MIP does, because we use the same number of discretized
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state values in its formulation. The solution time of MIP is strongly correlated to the selected

values of η1 and η2, which is explained further in Section 5.3.

5.3. Comparison of Our Approach with Grid Search

In this section, we test the solution quality of Line Search by comparing it with a grid search

on the (η1, η2) space. For the grid search, we let η1 ∈ {0,0.0001,1,2,3,4,5,6,7,8} and η2 ∈

{0,0.0001,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4}, except for the high demand uncertainty systems. For this

or when N = 20, we let η1 ∈ {0,0.0001,1,2,3,4,5,6,7} and η2 ∈ {0,0.0001,0.5,1.0,1.5,2.0,2.5}. We

add a low value of 0.0001 to these sets in order to test how activation of our approach with an

epsilon value affects the solution quality.

We observe that the gap between our approach and the best found in the grid search is 0.07% on

average for the instances in Section 5.2, while 88% of the time Line Search finds the best objective

function value in the grid. In Figure 4, we plot how many times the best solution is on a particular

parameter pair in the grid, including all alternative solutions.
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(b) N = 20, T = 7, Unc = H, Q= 800.

Figure 4 Number of best solutions on each pair of η values.

The solution time of the Line Search is highly dependent on the value of η1 and η2. In Figure

5, we provide the average times on each parameter pair for two of our instances. We observe that

with an increased value of parameters, the solution time is increased sharply. This also results in

a higher chance of breaking the memory limit set for the experiments.

6. Case Study in the Northern Netherlands

This case is based on the green hydrogen transportation in the Northern Netherlands region during

the transition towards a green hydrogen based economy as a part of the project Hydrogen Energy

Applications in Valley Environments for Northern Netherlands (HEAVENN) initiative (HEAVENN

2022). We apply our approach at two different supply locations considering expert-reviewed growth
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Figure 5 Average MIP solution time (in seconds) of 3 instances on each pair of η values.

scenarios. Experts envision that growth in the region affects the number of customers, the level of

supply and demand uncertainty, and the associated costs of hydrogen production and distribution

(New Energy Coalition 2020). This case study analyses the effect of these changes on hydrogen

distribution in the Northern Netherlands.

We use the parameter sets given in Table 5. These parameters are selected based on multiple

resources. For the transportation costs (W per replenishment and w per distance), the capacities

(Q, U , and C per kg), and the risks of holding green hydrogen (h per kg), we decide on the

parameters according to the expert reviews and the stakeholders in HEAVENN. The capacities are

planned to be expanded for each location over time. Although it is expected that similar vehicles

will be used in the long run, the vehicle capacity will increase over years due to technological

advancements resulting in more pressured tanks. For the service level probabilities (α and γ) and

the emergency shipment cost (e per kg), we refer to Sonntag, Schrotenboer, and Kiesmüller (2022)

and set them as α= 0.95, γ = 0.9, and e= 5. For the buy and sell prices of hydrogen per kg (b1

and b2 per kg), we refer to the expert discussion with partners (such as Shell, Engie, GasUnie,

and Green Planet) conducted within the HEAVENN program. The current hydrogen price varies

between e10 to e25 per kg. In the long run, the targeted price of hydrogen is about e2 per kg,

which is a competitive price to its carbon-based alternatives. We incur a difference in the buy and

the sell prices which motivates the utilization of the producer’s own supply. For the fixed ordering

cost K1 and emergent purchase K2, we consider the future projections of the region and assume

that the more hydrogen is available, the less fixed cost is imposed on each purchase.

The stakeholders in HEAVENN foresee two major producers in the following years in the North-

ern Netherlands region; one in Emmen, and one in Eemshaven. Emmen is planned as a producer

location supplying hydrogen to the nearby industry park and the refueling stations. A global supply

chain of hydrogen is envisioned in the longer term where imports and exports of hydrogen become
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Table 5 Parameters for the case study.

Case W w e Q h α γ U C K1 K2 b1 b2

Emmen 100 1 5 400 0.05 0.95 0.9 200 500 1000 1000 10.0 2
Eemshaven 1 100 1 5 700 0.05 0.95 0.9 800 4000 750 750 7.5 2
Eemshaven 2 100 1 5 1100 0.04 0.95 0.9 1500 8000 200 200 3.5 2

prominent bringing forward the role of seaports. In that respect, Eemshaven is being considered

for taking the lead on supplying hydrogen (New Energy Coalition 2020). Thus, we analyze these

two regions in our case study. The customer locations are selected from the existing and potential

hydrogen refueling stations (HRS) in the region. The list of locations, and corresponding mean and

standard deviation values are given in Table 14 in Appendix C. The mean and variances of supply

and demand are derived from the short- and mid-term projections within HEAVENN (Scholten

2021, Smid 2021, Hagedoorn 2021).

We solve three base cases in total in the following, one for supply in Emmen (in Section 6.1) and

two for supply in Eemshaven (in Section 6.2). For these base cases, the expected supply per day is

set equal to the expected total demand per day. We further relax this assumption in Section 6.3,

where the impacts of uncertainty levels are also considered.

6.1. Supply from Emmen

Our results show a total weekly estimated cost of e8582 for the Emmen case. The total cost for

delivering and inventory holding is found to be e2.45 per kg. This includes a transportation cost

of e1.15 per kg. This seems too high once we consider the target long run selling price of e2 per

kg, but it is reasonable with the current selling prices of e10 to e25 per kg. We expect the cost to

decrease sharply within the maturation of the economy making the target price attainable, which

is also validated by our case studies. The costs associated due to interaction with the external

supplier (i.e. purchasing costs) is e1.22 per shipped kg. We observe a high reliance on the external

hydrogen market due to the high supply and demand uncertainty under low volumes of the early

transition states. The vehicle routes are shown in Figure 6.

These routes are implemented with the transportation delivery schedule given in Table 6. In

this table, the normal distribution data of total quantity sent is given as (µ,σ2) for the delivery

days, where blank represents no planned delivery on that day. We notice a relatively big cluster 1

(including major demand locations such as Groningen), where the vehicle capacity is only enough

to deliver these customers on each day of the week. If a day is skipped, the targeted service level

of vehicle utilization would not be met. Moreover, Groningen and Leeuwarden have relatively

restricted inventory capacities (i.e., a high ratio of µi/U), which leads to delivering these customers

as frequently as possible, in order to have α= 95% chance of service level for customer inventory.
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Figure 6 The routing of case of Emmen in the suggested policy.

For the remaining clusters, the model groups two or three customers into one cluster and delivers

them as seldom as possible to achieve the targeted service level. This is cost-efficient due to the

relatively high transportation cost compared to the inventory holding costs. Finally, we observe

that the emergency shipment is almost never used, only 0.003% of the total hydrogen is expected

to be delivered by additional vehicles. Overall, we see the transportation and the purchasing costs

incur 96% of the total costs in this case with the remaining amount barring the costs for inventory

holding and emergency shipment.

Table 6 The distribution data (µ,σ2) of weekly transportation delivery schedule of Emmen case.

Cluster Mo Tu We Th Fr Sa Su

1 (295,352) (295,352) (295,352) (295,352) (295,352) (295,352) (295,352)
2 (184,372) (271,322)
3 (160,272) (254,272) (146,332)
4 (251,292) (169,342)

6.2. Supply from Eemshaven

In the mid- and long-term for the region, Eemshaven is foreseen to be the major supplier in

the Northern Netherlands. Additionally, a growth is expected in terms of number of locations

and volumes of hydrogen per location compared to the short-term future, while the uncertainties

decrease with a maturing hydrogen economy. We take these into account and create the instance

set shown in Table 14 in Appendix C. The suggested weekly transportation delivery schedules are

provided in Table 7 and the delivery routing is given in Figure 7a.
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Table 7 The distribution data (µ,σ2) of weekly transportation delivery schedule of Eemshaven 1 case.

Cluster Mo Tu We Th Fr Sa Su

1 (600,732) (600,732) (239,732) (661,522)
2 (323,652) (350,532) (552,532)
3 (570,722) (570,722) (570,722) (570,722) (570,722) (570,722) (570,722)
4 (600,722) (600,722) (600,722) (600,722) (600,722) (600,722) (600,722)
5 (550,652) (550,652) (550,652) (550,652) (550,652) (550,652) (550,652)

(a) Eemshaven 1. (b) Eemshaven 2.

Figure 7 The routing on Eemshaven cases in the suggested policy.

Since transportation costs are the major cost element of the system, we observe that the number

of customers in a group increases within a higher density of customer locations in the area. Once

the farthest customer from the supplier is delivered, it is more cost-efficient to deliver to other

customers that are close to the farthest customer. This leads to more frequent deliveries in order

to attain the vehicle capacity service level for the groups with many customers. Finally, this also

minimizes the effects of customer uncertainties since combined groups have less uncertainty in

total. In this case, the total weekly expected cost is e11814. The transportation cost per kg is

e0.54. Note that this is less than half of the Emmen case due to the increased vehicle capacity and

higher number of customers in the region which results in less traveling in between consecutive

deliveries. The purchasing cost per shipped kg is e0.16, which is only 14% of the Emmen case.

This is because, with frequent deliveries and more customers on a route, the dynamic purchasing

problem can provide policies with much lower costs due to reduced variances between week days.

The percentage of emergency shipments to the customers is 0.27% and therefore the system is

mostly run on its own vehicle fleet.
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Eemshaven 2: We study an additional Eemshaven scenario with mature hydrogen economy

settings since the region is expected to become a major hub port in the long run. In this scenario,

the producer is expected to replenish a total of 24 customers. The mean levels for supply and

demand are further increased. Similar to the first Eemshaven case (i.e. Eemshaven 1), we assume

a reduced uncertainty on both supply and demand in the mature stage (i.e. Eemshaven 2), for

example, the variance of daily demand of candidate HRS does not change from Eemshaven 1 to

Eemshaven 2 while the mean value increases (see Table 14 in Appendix C). The solution has an

expected cost of e12877 per week. The routes are shown in Figure 7b, and the transportation

delivery schedule is provided in Table 8.

Table 8 The distribution data (µ,σ2) of weekly transportation delivery schedule of Eemshaven 2 case.

Cluster Mo Tu We Th Fr Sa Su

1 (600,602) (931,602) (569,732)
2 (931,602) (569,732) (600,602)
3 (1000,772) (1000,772) (1000,772) (1000,772) (1000,772) (1000,772) (1000,772)
4 (900,852) (900,852) (900,852) (900,852) (900,852) (900,852) (900,852)
5 (850,792) (850,792) (850,792) (850,792) (850,792) (850,792) (850,792)
6 (840,692) (363,692) (897,492) (840,692)
7 (900,732) (900,732) (900,732) (900,732) (900,732) (900,732) (900,732)

In the results, we observe a similar structure to the Eemshaven 1 case, where more and more local

customers are grouped in a cluster. It is cost-efficient to have larger groups that are delivered once

every day. The transportation cost per kg is e0.33. Even though this is the lowest compared to all

cases, it is still the main cost element of the system. The purchasing cost per shipped kg is decreased

to e0.02. In all problem instances, with less uncertainty and more capacities, the daily purchasing

problem yields relatively less costs. Therefore, in a mature hydrogen market where the uncertainties

are quite low, we suggest that decision makers first optimize the tactical-level operations regarding

the supply of hydrogen, and then make the necessary postponements in individual transportation

delivery schedules of clusters to further optimize their daily purchasing problem of distributing the

hydrogen to end users as a second goal.

A summary table of each case is given in Table 9 for comparison, where the costs are in e. ct

represents the transportation cost per unit, cp is the purchasing costs per unit, %e is the expected

percentage of units that are transported via an emergency shipment, and lastly the total expected

cost of a cycle is given.
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Table 9 The solution information of each cases.

Case ct cp %e Total

Emmen 1.15 1.22 0.01% 8582
Eemshaven 1 0.54 0.16 0.27% 11814
Eemshaven 2 0.33 0.02 0.08% 12877

6.3. Impacts

Impact of supply quantity: For the base cases of Emmen, Eemshaven 1, and 2, we assume that

the mean daily supply equals the mean total daily demand. However, for example, due to uncer-

tainty in how the green hydrogen economy will emerge in society or the disruptions in supply

chains, we may observe cases where this equality does not hold. In order to find the effects of the

possible imbalances, we analyze all three cases by increasing and decreasing the supply amounts.

Let µp and σp be the mean and the standard deviation of daily supply, respectively. For ms in

{0.90,0.91,0.92, . . . ,1.09,1.10}, we analyze varying levels of supply by setting the mean equal to

msµp and standard deviation equal to msσp. In Figure 8a, we give the percentage change for the

purchasing costs for each multiplier.
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Figure 8 Effects of the supply distribution.

In all three cases, we observe a decrease in costs with an increase in supply. This is because

increasing supply decreases the need for buying hydrogen from the external supplier, and moreover

increases profits by selling the hydrogen to the external supplier. The effects of the multiplier are

higher in Eemshaven cases compared to the Emmen case, possibly due to the higher supply/demand

quantities which result in more purchases within, say, 1% change in ms. While this is an advantage

for the Eemshaven cases whenms > 1, it results in a sharp increase in costs if the supply is disrupted

(ms < 1). Thus, the more the ratio of supply/demand is decreased, the more we recommend to the
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decision makers to focus on their daily purchasing problem. This recommendation gains importance

within the maturation of the hydrogen economy due to the higher supply and demand quantities.

Impact of supply uncertainty: In our cases, we assume some level of uncertainty in both supply

and demand. While this is decided within the expert discussions, we may observe a higher or

a lower level of uncertainty in the future. We test various supply uncertainty levels to see how

the system performs under different uncertainties. For mp ∈ {0,0.1, . . . ,1.9,2}, we analyze varying

levels of supply uncertainty by setting the standard deviation equal to mpσp. The weekly expected

purchasing costs are provided in Figure 8b.

We observe almost a parabolic increase in purchasing costs within the increase in supply variance

in Figure 8b. The purchasing costs are converging almost to zero in all cases when mp is converging

to zero. Even though the system still has uncertainty in demand with mp = 0, the daily purchasing

problem handles that uncertainty with almost no purchase from the external supplier. This shows

that, as one of our key contributions in this paper, supply uncertainty is a major factor affecting

the dynamic purchasing costs, and is crucial to consider.

Impact of demand uncertainty: As we did with supply uncertainty, we further study the effects of

demand uncertainty. For md in {0.1,0.2, . . . ,1.8,1.9}, we analyze varying levels of demand uncer-

tainty by setting the standard deviation of the customer demand i, σi, equal to mdσi for all

customers. The tactical-level costs and the purchasing costs are shown in Figures 9a and 9b for

each multiplier, respectively. In both figures, the costs are given relative to the base cases, where

a cost ratio of 1 represents the same cost as the base case.
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Figure 9 Comparison of tactical-level and purchasing costs to the base case over demand uncertainty multiplier

(md).
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We observe that in Figures 9a and 9b, the change in costs is not following a smooth function unlike

the previous analysis. In the subparts where the costs are smoothly increasing, for example from

md = 1.4 tomd = 1.8 in Emmen case, we observe no change in the solution structure; the routing and

the transportation delivery schedule. The costs are gradually increasing due to higher safety stocks

and higher chances of emergency shipment. The same does not apply, however, from md = 0.7 to

md = 0.8 in Emmen case, where a different solution is selected with a different route and associated

daily purchasing problem. This is either because the solution of md = 0.7 is less efficient with

increased uncertainty levels, or because this solution is no longer feasible due to service target levels.

Additionally, the more customers we have in a region, the more combinations of feasible clusters

exist. Thus, the bumpiness in costs decreases towards a mature market, due to higher possibilities

for distribution. Overall, especially in the early transition stages, we recommend decision makers

to update their system solutions even with a tiny change in uncertainties in customer demand.

7. Conclusions

In this study, we present a novel solution framework for jointly addressing tactical-level and

operational-level decision making in the context of green-hydrogen logistics. We consider a stochas-

tic cyclic inventory routing problem that generalizes several existing problems in the context of

inventory routing. The particular innovation is the consideration of supply uncertainty, due to

uncertain hydrogen production from renewable sources, in combination with cyclic transportation

delivery schedules that impose deliveries at fixed periods.

Our approach combines two models: a Mixed Integer Programming (MIP) model that solves

tactical-level decisions to generate a transportation delivery schedule for hydrogen, and a Markov

decision process (MDP) model that optimizes operational-level decisions for buying and selling

hydrogen on the market to ensure the feasibility of the transportation delivery schedule. We pro-

pose a parameterized cost function approximation approach for the tactical-level MIP model to

anticipate the cost of operational-level dynamic decisions. Our approach includes an efficient search

algorithm that iteratively solves MIPs and MDPs to find the optimal parameters for the modi-

fied MIP model. This allows us to effectively balance tactical and operational considerations to

maximize the overall efficiency of green-hydrogen logistics operations.

We show that our approach provides high-quality solutions on a stylized benchmark set. First,

our approach outperforms an algorithm that takes a classic two-stage approach in which first

the transportation delivery schedules are created (i.e., the tactical-level decision), and afterward,

the dynamic purchasing decisions are made (i.e., the operational-level decisions). In addition, our

efficient search over the parameter space, as required for the cost function approximation, shows

excellent performance in comparison to a grid search over the parameter space.
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Furthermore, we show the results of a case study to give insights into efficient green hydrogen

distribution as a part of the project Hydrogen Energy Applications in Valley Environments for

Northern Netherlands (HEAVENN 2022). We solve three expert-reviewed base scenarios. Further-

more, we analyze the impact of various problem elements upon these base scenarios and it appears

that supply uncertainty is a key factor for operational-level decisions and should be anticipated

while designing transportation delivery schedules on a tactical-level.

The opportunities for future research are numerous. Some of these require no fundamental change

in the model and approach, only requiring generating customer clusters in a different way. Examples

include the consideration of a heterogeneous vehicle fleet, enabling the use of multiple vehicles per

replenishment, and demand and supply distributions without autocorrelation but that differ per

period. Furthermore, the problem may be dealt with in a dynamic setting, enabling nonstationary

and/or auto-correlated customer demands, and the daily reoptimization of vehicle routes. This

latter element would also require predicting future hydrogen production based on weather forecasts,

which we deem a very interesting avenue for further research.
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Appendix A: An Example Solution

We discuss an example instance in this section to gain insight into the dependency between the tactical-level

and operational-level decisions. The location and corresponding distances of 3 customers are given in Figure

10a, where 0 represents the producer location. The daily demands of customers 1−3 are normally distributed

with mean values of 100,250,500 and standard deviations of 25,50,75, respectively. The daily supply of the

producer is also normally distributed with a mean of 850 and a standard deviation of 120.

(a) The locations and distances of example instance. (b) Routing and clustering of the example solution.

Figure 10 Locations (a) and the associated routing (b) for the illustrative SCIRP example.

The tactical-level decision is displayed in Figure 10b. It shows two clusters being selected: A cluster

comprising customers 1 and 2, and a cluster consisting of customer 3 solely. The transportation delivery

schedules and associated costs are displayed in Table 10.

Table 10 The transportation delivery schedule and the costs of the illustrative solution.
(a) The transportation delivery schedule of clusters.

Cluster Mo Tu We Th Fr Sa Su

{1,2} ✓ ✓ ✓
{3} ✓ ✓ ✓ ✓

(b) The cycle costs of clusters.

Cluster Transport Holding Emergency

{1,2} 1020 863 72.2
{3} 880 885 77.4

It is found that the transportation cost of cluster 1 is 1020. With selected parameters W = 100 and w= 20

and the tour length of 4+3+5= 12, one replenishment of cluster 1 costs 100+20× 12 = 340. The schedule

implies having 3 visits weekly on cluster 1, totaling a cyclic transportation cost of 340× 3 = 1020. Secondly,

the base-stock levels for cluster with α= 0.95 are selected as {371,258,258} for customer 1 and {892,616,616}

for customer 2, respectively on Monday, Thursday, and Saturday replenishments. These base-stocks does

not exceed the customer inventory capacity U = 1200. Expected positive amount of average inventories of

customers 1 and 2 are calculated with these base-stocks as in Table 11a. On average, with h= 0.2, a holding

cost of 0.2× 185.35 = 37.07 and 0.2× 431.42 = 86.22 is paid daily for customers 1 and 2, respectively. This

results in an expected holding cycle cost of (86.22 + 37.07)× 7 = 863 for the cluster. Lastly, to calculate

emergency shipment amounts, we provide the mean and the standard deviation of normal distributions for
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Table 11 The transportation delivery schedule and the costs of the illustrative solution.

(a) Expected average inventory of cluster 1.

Cust. Mo Tu We Th Fr Sa Su Avg

1 321 221 122 208 109 208 109 185
2 767 517 268 491 242 491 242 431

(b) Distribution of emergency shipments.

Day Mean Std. Dev. Exp. Pos.

Mo -110.79 79.06 2.89
Th -539.21 96.82 0.00
Sa -500.00 79.06 0.00

emergency shipment quantities, and corresponding expected positive part of these distributions in Table 11b

for Q= 1200. Assuming e= 25, the expected emergency shipment cost would be 25× 2.89 = 72.2 on cycle.

Upon the transportation delivery schedule, we need to base our dynamic purchasing decisions. We discretize

the continuous inventory levels in steps of 5 units. We set K1 = 1000, K2 = 2500, b1 = 10, and b2 = 2. The

resulting expected cyclic buying and selling costs, obtained by value iteration, is found to be 782. We observe

that the optimal purchase policy is similar to a period-dependent (s,S) policy, i.e., if the inventory drops

below a corresponding s, the policy buys up to S. The (s,S) values for each day of the week are provided in

Table 12.

Table 12 The optimal (s,S) policies of the example solution.

Mo Tu We Th Fr Sa Su

s 0 340 30 315 70 350 330
S 385 795 605 805 670 820 640

Unlike in a classic stationary (s,S) policy, the producer’s inventory may exceed S for particular periods,

for example, when the supply is more than the demand outflow on the next day of making a purchase.

Moreover, this may occur consecutively for multiple periods and accumulate the producer’s inventory up to

its capacity. In the ranges of [s,C] for each day of the week, the policy implies no buy or sell for the producer

in the illustrative example. If the inventory is above C, the optimal policy is only to sell the part that is in

excess of the capacity.

This solution is efficient where both decision stages are considered jointly. In order to illustrate this

efficiency, and the idea behind our approach in Section 4, consider an alternative tactical-level solution

where the only change occurs on the transportation delivery schedule of the clusters, given in Table 13.

In this solution, the transportation delivery schedule of customer 3 is postponed for 5 days. For example,

the base-stock policy on Tuesday in the first solution is used as the base-stock policy on Sunday in the

alternative solution. Thus, the expected cost of the tactical-level decision does not change by postponing

the transportation delivery schedule. However, we observe that the expected cost of the dynamic purchasing

decisions increases to 2025, which is more than double the expected cost of the dynamic purchasing decision

in the original solution. This results in a 27% increase in the total expected cycle cost of the SCIRP.
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Table 13 The transportation delivery schedule of the alternative tactical-level solution.

Cluster Mo Tu We Th Fr Sa Su

{1,2} ✓ ✓ ✓
{3} ✓ ✓ ✓ ✓
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Appendix B: Pseudo-codes of the Solution Approach

Algorithm 1 Precompute the set R.
Input: Demand distributions and instance parameters.

Output: The set R with corresponding parameters cr, β
i
r, ∆

t
r, and Λt

r.

1: Compute F−1
in (α) for all i∈N and n∈T .

2: While computing F−1
in (α), store Θi :=max{n | F−1

in (α)≤U} for all i∈N .

3: Recursively find all possible partitioning of customers, K , in which a full transportation delivery schedule

is possible without violating Constraint (4).

4: While computing K , store UBk as the longest time in between two consecutive deliveries without

violating Constraint (4) for partition k ∈K .

5: for each partition k ∈K do

6: for each 2T − 1 transportation delivery schedules do

7: if the longest replenishment of the schedule ≤min{UBk,mini∈Nk Θi} then

8: Add a cluster in R by computing cr, β
i
r, ∆

t
r, and Λt

r for all i∈N and t∈T .

9: end if

10: end for

11: end for
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Algorithm 2 Line Search.

Input: Initial values of (η1, η2) = (ϵ, ϵ), increment value of ζ, an upper bound of UB, and the set R with

corresponding parameters cr, β
i
r, ∆

t
r, and Λt

r.

Output: The minimum found cost of z =
∑

r∈R crxr +C(π(x)).

1: Initialize z =∞, ψ= 0, and i= 0.

2: while i ̸= 2 and (η1, η2) ̸= (UB,UB) do

3: Solve the modified set-partitioning model with cr, β
i
r, ∆

t
r, Λ

t
r, and (η1, η2) to record x

′
r and

∑
r∈R crx

′
r.

4: Solve MDP with the corresponding tactical routing solution, x′
r, to derive the optimal policies.

5: Simulate the optimal MDP policy to derive C(π(x′)) and record z′ =
∑

r∈R crx
′
r +C(π(x′)).

6: if z′ ≤ z then

7: Update z := z′.

8: if max(η1, η2)<UB then

9: Update η1 := η1 +ψζ, and η2 := η2 +(1−ψ)ζ.

10: else

11: Update ψ := 1−ψ and i := i+1.

12: end if

13: else

14: Update η1 := η1 −ψζ, and η2 := η2 − (1−ψ)ζ.

15: Update ψ := 1−ψ and i := i+1.

16: end if

17: end while
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Appendix C: Case Study Information

Table 14 Mean and standard deviations of daily demand distributions (in kg) of the case study.

Emmen Eems1 Eems2
Node Location Mean Std Dev Mean Std Dev Mean Std Dev

0 Emmen 500 250 - - - -
0 Eemshaven - - 2195 658.5 4670 934

1 Groningen 100 20 350 52.5 600 60
2 Delfzijl 35 14 100 25 150 30
3 Leeuwarden 100 20 200 40 400 60
4 Emmen 65 16 250 50 450 67.5
5 Pesse 50 15 120 30 250 37.5
6 Meendenertol 30 12 75 22.5 120 24
7 Panjerd 30 12 100 30 150 30
8 Haerst 30 12 100 30 150 30
9 Paardeweide 30 12 100 30 150 30
10 Oude Riet 30 12 100 30 150 30
11 Roode Til - - 100 30 150 30
12 Veenborg - - 100 30 150 30
13 Smalhorst - - 100 30 150 30
14 Zeijerveen - - 100 30 150 30
15 Mandelân - - 100 30 150 30
16 De Horne - - 100 30 150 30
17 Stienkamp - - 100 30 150 30
18 Bloksloot - - - - 150 30
19 De Krellen - - - - 150 30
20 Mienscheer - - - - 150 30
21 Glimmermade - - - - 150 30
22 Dekkersland - - - - 150 30
23 Bareveld - - - - 150 30
24 Dikke Linde - - - - 150 30
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