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Towards Low-carbon Power Networks: Optimal
Integration of Renewable Energy Sources and

Hydrogen Storage
Sezen Ece Kayacık, Albert H. Schrotenboer, Evrim Ursavas, Iris F. A. Vis

Abstract—This paper proposes a new optimization model and
solution method for determining optimal locations and sizing
of renewable energy sources and hydrogen storage in a power
network. We obtain these strategic decisions based on the multi-
period alternating current optimal power flow (AC OPF) problem
that considers the uncertainty of renewable output, electricity
demand, and electricity prices. We develop a second-order
cone programming approach within a Benders decomposition
framework to provide globally optimal solutions. To the best of
our knowledge, our paper is the first to propose a systematic
optimization framework based on AC OPF that jointly analyzes
power network, renewable, and hydrogen storage interactions
in order to provide optimal locations and sizing decisions of
renewables and hydrogen storage. In a test case, we show that
the joint integration of renewable sources and hydrogen storage
and consideration of the AC OPF model significantly reduces
the operational cost of the power network. In turn, our findings
can provide quantitative insights to decision-makers on how to
integrate renewable sources and hydrogen storage under different
settings of the hydrogen selling price, renewable curtailment
costs, emission tax prices, and conversion efficiency.

Index Terms—Green hydrogen, optimal power flow, renewable
energy source integration, second-order cone programming, stor-
age integration

NOMENCLATURE

Sets and indices
B Set of buses, indexed by i
G Set of conventional generators, indexed by g
L Set of lines, indexed by (i, j)
T Set of time periods, indexed by t
δ(i) Set of neighbors for bus i
Ω Uncertainty set, indexed by ω
Parameters
CC Renewable curtailment cost
CE Emission tax price
CH Cost per MW of hydrogen storage unit
CR Cost per MW of renewable installed
CS Hydrogen selling price
CU Cost of unsupplied loads
ηg Power-to-gas efficiency
ηp Gas-to-power efficiency
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B Total investment budget for renewables and storage
Sij Maximum allowable flow on line (i, j)
V i Upper bound on the voltage magnitude at bus i
θij Phase angle bound for line (i, j)
(g2p)i Maximum allowable gas-to-power conversion at bus i

(p2g)i Maximum allowable power-to-gas conversion at bus i
ρω Probability of scenario ω
V i Lower bound on the voltage magnitude at bus i
hR
i , h

R
i Min and max allowable power ratings of storage at

bus i
p
i
, pi Lower and upper limits of active output of generator

located at bus i
q
i
, qi Lower and upper limits of reactive output of generator

located at bus i
rR
i , r

R
i Min and max allowable power ratings of renewable at

bus i
Bij Susceptance for line (i, j)
f rate Ratio for fuel cell
gii, bii Shunt susceptance at bus i
Gij Conductance for line (i, j)
pdit(ω) Active power load at bus i, time t, scenario ω
pdi Active power load at bus i
qdit(ω) Reactive power load at at bus i, time t, scenario ω
qdi Reactive power load at bus i
Rdown

i Ramp down limit for generator at bus i
Rup

i Ramp up limit for generator at bus i
rit(ω) Renewable power factor at bus i, time t, scenario ω
smax Storage capacity in terms of hours
Decision Variables
hB
i If a hydrogen storage is constructed at bus i hB

i = 1,
and otherwise hB

i = 0
hR
i Power rating of storage at bus i, time t, scenario ω

rB
i If a renewable energy source is constructed at bus i

rB
i = 1, and otherwise rB

i = 0
rR
i Power rating of renewable at bus i, time t, scenario ω
(g2p)it(ω) Gas-to-power conversion at bus i, time t, scenario

ω
(p2g)it(ω) Power-to-gas conversion at bus i, time t, scenario

ω
|Vit(ω)| Voltage magnitude at bus i, time t, scenario ω
θit(ω) Phase angle at bus i, time t, scenario ω
hit(ω) Amount of hydrogen sold at bus i, time t, scenario ω
lit(ω) Renewable power curtailment at bus i, time t, scenario

ω
pijt(ω) Active power flow at line (i, j), time t, scenario ω
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pgit(ω) Active power output at bus i, time t, scenario ω
qijt(ω) Reactive power flow at line (i, j), time t, scenario ω
qgit(ω) Reactive power output at bus i, time t, scenario ω
sit(ω) Energy state-of-charge of storage at bus i, time t,

scenario ω
uit(ω) Unsupplied load at bus i, time t, scenario ω

I. INTRODUCTION

TO achieve net-zero emission targets by 2050 [1], govern-
ments strongly encourage the deployment of renewable

energy production to reduce the emissions caused by electric-
ity and heat generation, which currently accounts for 46% of
the increase in global emissions [2]. However, the increased
penetration of renewable energy into power networks disrupts
electricity supply-demand matching due to the intermittency
and uncertainty of renewable energy output. The use of green
hydrogen, i.e., hydrogen generated from renewable sources, is
a high-potential solution to this problem. It can be used to
store renewable energy to mitigate supply-demand imbalances
of electricity. It can also be sold outside the network to satisfy
green hydrogen demand from various sectors, including indus-
try and mobility, providing new economic opportunities [3],
[4]. This paper studies how renewables and hydrogen storage
can be integrated into existing power networks efficiently. To
the best of our knowledge, this is the first study to design
an integrated system of a power network, renewables, and
hydrogen storage by providing optimal location and sizing
decisions of renewables and hydrogen storage.

A power network operator is responsible for ensuring the
network’s reliability and cost-efficiency at the operational level
[5]. The network’s structure regarding the location and sizing
of renewables and hydrogen storage significantly affects opera-
tional planning. From a technical perspective, improper place-
ment of renewables and storage causes challenges, including
high power losses, voltage instability, and power quality and
protection degradation [6]. From an economic perspective, the
high-capital costs of renewables and storage should be worth
the resulting daily operational gains. Therefore, it is crucial
to determine the strategic location and sizing decisions con-
sidering daily network operations to provide a reliable power
network and fully exploit the economic and environmental
benefits of renewables and hydrogen storage.

We provide a new model together with a solution approach
for integrating renewables and storage into power networks
while explicitly considering the operational level challenges. In
this regard, the literature has provided valuable contributions,
but only to isolated parts of this joint optimization problem.
We review this literature in four steps. First, we discuss recent
studies on integrating renewables, and second, on integrating
general storage types. Third, we provide an overview of the
recent works on operational level planning, i.e., optimal power
flow (OPF). Last, we outline the new characteristics introduced
by considering green hydrogen as a storage type in our setting.

The first group of papers studies only renewable integration
into power networks; see [6] for an overview. Recently, the
location of renewables has been studied while ignoring sizing
decisions in radial distribution networks [7], for which the

authors provide a heuristic approach considering uncertainty
in renewable output and network demand. In [8], the same
uncertainties are tackled, but only the sizing of renewables is
considered. However, both studies neglect joint location and
sizing decisions, which may result in suboptimal decisions. In
[9], joint location and sizing decisions are studied considering
renewable intermittency. While the aforementioned studies
draw conclusions about the integration of renewables into
power networks, the need for more accurate and computa-
tionally efficient solution methods is emphasized in [6].

The second group of papers studies the integration of energy
storage systems into power networks with given locations
and sizing of renewables [10]. In [11], a direct current (DC)
OPF model is proposed considering renewable uncertainty
to determine locations and sizing of storage systems in a
transmission network, aiming to minimize the total operating
cost and the investment cost of storage systems. They show
that the operational level parameters, such as curtailment cost
of renewables, affect the location and sizing decisions. A
similar DC OPF optimization study proposed in [12] shows
that increasing the capital investment in storage systems can
reduce the daily operating cost of the power network. The
authors of [13] and [14] propose hierarchical planning models
considering alternating current (AC) power equations for radial
distribution networks. These methods, however, cannot be
directly applied to meshed transmission networks since power
flows frequently change direction throughout the day or as a
function of the production from generators [11].

Next to the need for further developments in storage studies,
very limited literature is available on the joint integration
of renewables and storage. The authors of [15] and [16]
are among the initial attempts for joint optimization. The
authors of [17] study locations and sizing of both renewables
and energy storage systems. They use the heuristic moment
matching method to represent renewable output and network
load uncertainties. However, their study does not include
interactions with conventional generators and uses a local
optimization method. A literature review by [6] further empha-
sizes the need for joint studies since the combined planning
of renewables and energy storage systems can increase the
reliability and power quality of power networks.

For efficient location and sizing decisions, the underlying
operational level problem needs to be analyzed carefully.
Mainly OPF models are used because they can analyze the
impact of location and sizing decisions on daily network
operations. Most studies consider a 24-hour horizon due to
hourly fluctuations in demand and supply; however, consid-
ering such a long horizon poses a computational burden.
Albeit the risk of obtaining physically unrealizable solutions,
a DC approximation of AC power equations is commonly
used to reduce the computational complexity [11], [12]. AC
OPF models are solved with simulations [18], local solvers,
and heuristic methods [19], [20], which cannot guarantee the
global optimality of the proposed solutions. Recently, convex
relaxations of the OPF problem have drawn research interest
since they can produce globally optimal solutions. Mainly
semidefinite programming and second-order cone program-
ming (SOCP) have been widely studied [21]. In the context
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of renewable and storage integration, convex relaxations be-
come harder to solve since the decisions require solving a
mixed-integer multi-period OPF (MOPF). The studies by [22]
and [23] are two of the few papers that propose an exact
SOCP relaxation for energy storage optimization. However,
the exactness of SOCP is conditioned on certain settings and
valid for only radial distribution systems. Effective convex
programming approaches for meshed transmission networks
need further development.

Hydrogen storage, as opposed to other alternative storage
systems, interacts with the external hydrogen market and
provides opportunities for selling hydrogen. For example, [24]
shows that arbitrage revenues alone cannot justify the invest-
ment cost of storage under some settings. However, the cost
may be justified by considering other storage-related benefits,
such as profit from selling hydrogen. Therefore, consideration
of the hydrogen market has the potential to change decision
dynamics in the context of storage location and sizing, which
is yet unaddressed in the literature.

In this paper, we propose a stochastic optimization model
for jointly deciding on the location and sizing of renewables
and hydrogen storage based on multi-period AC OPF prob-
lems. We propose a solution approach based on SOCP to
provide globally optimal solutions for the resulting model. We
create a representative test case that involves scenarios based
on real data sets to represent the stochasticity of the network
load, renewable energy output, and electricity generation price.
To the best of our knowledge, this is the first study to
provide a systematic optimization method to decide on optimal
locations and sizings of renewables and hydrogen storage
while considering the various dynamics of the underlying
operational level problem including AC power flow equations,
the stochasticity of operational parameters, and integration
of the hydrogen market. Specifically, the following strategic
level questions can be answered: (1) Can operational cost
savings compensate for the high capital costs of renewables
and hydrogen storage? (2) How should investment budgets
be allocated between renewables and hydrogen storage? (3)
Which locations and sizing are preferable for renewables and
hydrogen storage? The main contributions can be summarised
as follows:

• We propose a new stochastic optimization model for
joint renewable and hydrogen storage location and sizing
into power networks based on multi-period AC OPF
problems. In addition, our model captures interaction with
the hydrogen market.

• We develop a systematic solution approach based on
SOCP within a Benders decomposition framework to
provide globally optimal solutions. Our approach offers
global optimality guarantees with very small optimality
gaps.

• On a representative test case, we show it is crucial to con-
sider the joint optimization of renewables and hydrogen
storage as it results in significant operational cost savings
compared to the case where we only include renewables.
Moreover, by comparing against DC approximations, we
show the importance of including AC power equations
as it changes location and sizing decisions and thereby

reduces operational costs.
• Our optimization framework allows us to answer relevant

strategic-level questions. Namely, we show that a func-
tioning hydrogen market can change decision dynamics.
In addition, we investigate the effects of renewable cur-
tailment cost, emission tax price, and conversion efficien-
cies by means of a sensitivity analysis. Our findings are
useful for decision-makers in integrating renewables and
hydrogen storage in power networks.

The remainder of this paper is organized as follows. Sec-
tion II introduces the optimization model with its SOCP
relaxation. Section III introduces our solution approach for this
optimization problem. Section IV describes the model input
and introduces the input data used in the model formulation.
Section V presents the computational results. Section VI
presents the concluding remarks.

II. MODEL

This section presents our mathematical programming for-
mulation and its mixed-integer SOCP (MISOCP) relaxation.
The system consists of three main components: a power
network, renewable energy sources, and hydrogen storage. The
interaction of these components is coordinated by a central
network operator responsible for investing in renewable energy
sources, investing in hydrogen storage systems, and planning
the daily network operations. We consider that the investment
decisions are made once to be operational during its lifetime.
To simulate the operation of the resulting power system after
investment decisions are made, representative days are used
to characterize the daily network planning. The goal is to
minimize the expected daily operational cost for a given
investment budget. We model the joint optimization problem
of the network operator as a two-stage stochastic mixed-integer
non-linear programming (MINLP) model.

The power network is denoted by N = (B,L), where B
denotes the set of buses and L denotes the set of transmission
lines. Let δ(i) denote the set of neighbors for bus i ∈ B and
let G ⊆ B denote the set of conventional (i.e., non-renewable)
generators.

The first-stage decision comprises the location and sizing of
renewable energy sources (e.g., wind turbines) and hydrogen
storage subject to a given investment budget. Hydrogen storage
consists of an electrolyzer to convert renewable power into
hydrogen, a storage unit to store hydrogen, and a fuel cell to
convert the hydrogen back into power. We assume that these
components are installed together, and the storage unit and
fuel cell capacity are in line with the size of the electrolyzer.
The second-stage decisions take place after the uncertainty
of renewable output, electricity demand, and electricity gen-
eration prices are revealed. It entails planning daily network
operations by solving the AC MOPF over a finite time horizon
T = {1, ..., T} subject to a given set of scenarios (i.e.,
representative days) ω ∈ Ω. The network operator can decrease
the cost of daily network operations by exploiting the energy
arbitrage by storing electricity when prices are low and feeding
back electricity to the network when prices are high. Moreover,
the profits can be boosted by selling hydrogen to the external
market.



4

In what follows, we first detail the two-stage stochastic
MINLP model that has a non-convex feasible region due to
the AC power equations. Afterward, we present its convex
relaxation based on SOCP.

A. MINLP Formulation

The objective function (1) of the MINLP formulation
minimizes the expected operational cost, which consists of
five parts: the cost function of production from conventional
generators (h(·)), a penalty term representing the emission
cost associated with conventional generators (CE), the cost of
curtailing excess production from renewables (CC), the cost
of unsupplied loads (CU ), and profit obtained from selling
hydrogen to external market (CS).

min
∑
ω∈Ω

ρω

[∑
t∈T

(∑
i∈G

(
h(pgit(ω)) + CEpgit(ω)

))

+

(∑
i∈B

(
CC lit(ω) + CUuit(ω)− CShit(ω)

))]
.

(1)

The system is subject to the following constraints:
1) Investment Constraints: We denote the location deci-

sions for renewable and hydrogen storage with rB
i and hB

i ,
respectively, equaling 1 if a new source is located to bus
i ∈ B, and 0 otherwise. We determine the corresponding power
ratings with continuous decision variables rR

i and hR
i .∑

i∈B
(CRrR

i + CHhR
i ) ≤ B (2a)

hB
i ≤ rB

i i ∈ B (2b)

rR
i r

B
i ≤ rR

i ≤ rR
i r

B
i i ∈ B (2c)

hR
i h

B
i ≤ hR

i ≤ hR
i h

B
i i ∈ B. (2d)

Constraint (2a) limits the total investments in renewables and
hydrogen storage by a certain budget (B). Constraint (2b)
limits placing hydrogen storage to a node with a renewable
energy source. Constraints (2c) and (2d) ensure that the power
ratings of renewables and hydrogen storage are within the
prespecified ranges, respectively.

2) Operational Storage-related Constraints: For each bus
i ∈ B, time t ∈ T , and scenario ω ∈ Ω:

sit(ω) + ηg(p2g)it(ω)− (g2p)it(ω)− hit(ω) = si(t+1)(ω)
(3a)

si0(ω) = Ii(ω) (3b)
sit(ω) ≤ smaxhR

i (3c)
(p2g)it(ω) ≤ hR

i (3d)
(p2g)it(ω) ≤ rit(ω)r

R
i (3e)

(g2p)itk ≤ f ratehR
i . (3f)

Constraint (3a) controls the hydrogen level between con-
secutive periods by considering the amount of power-to-
gas, gas-to-power conversions, and the selling of hydrogen.
Constraint (3b) sets the hydrogen storage’s initial state of
charge. Constraint (3c) ensures that the storage capacity is

not exceeded. Constraints (3d) and (3f) limit the power-to-
gas conversion and gas-to-power conversions, respectively.
Constraint (3e) allows only renewable power to be converted
into green hydrogen.

3) Node Balance Constraints: For each bus i ∈ B, time
t ∈ T , and scenario ω ∈ Ω:

pgit(ω)− pdit(ω) + rit(ω)r
R
i − lit(ω)− (p2g)it(ω) (4a)

+ (g2p)it(ω)ηp + uit(ω) = gii|Vit(ω)|2 +
∑

j∈δ(i)

pijt(ω)

qgit(ω)− qdit(ω) = −bii|Vit(ω)|2 +
∑

j∈δ(i)

qijt(ω). (4b)

Constraint (4a) ensures active power flow balance at bus i
while considering uncertain network load, uncertain renewable
output and curtailments, power-to-gas and gas-to-power con-
versions, and unsupplied load. Constraint (4b) ensures reactive
power flow balance at bus i.

4) Flow Constraints: For each line (i, j) ∈ L, time t ∈ T ,
and scenario ω ∈ Ω:

pijt(ω) = Gij |Vit(ω)|2 + |Vit(ω)||Vjt(ω)| (5a)
× [Gij cos(θit(ω)− θjt(ω))−Bij sin(θit(ω)− θjt(ω))]

qijt(ω) = −Bij |Vit(ω)|2 − |Vit(ω)||Vjt(ω)| (5b)
× [Bij cos(θit(ω)− θjt(ω)) +Gij sin(θit(ω)− θjt(ω))].

Constraints (5a) and (5b) represent the active and reactive
power flow, respectively.

5) Network Operational Limits: For each time t ∈ T , and
scenario ω ∈ Ω:

V i ≤ |Vit(ω)| ≤ V i i ∈ B (6a)
p
i
≤ pgit(ω) ≤ pi g ∈ G (6b)

q
i
≤ qgit(ω) ≤ qi g ∈ G (6c)

−Rdown
i ≤ pgit+1(ω)− pgit(ω) ≤ Rup

i i ∈ B (6d)

pijt(ω)
2 + qijt(ω)

2 ≤ S
2

ij (i, j) ∈ L (6e)

|θit(ω)− θjt(ω)| ≤ θij (i, j) ∈ L. (6f)

Constraint (6a) enforce bus voltage magnitude to stay within
acceptable limits of lower and upper bounds. Constraints (6b)
and (6c) limit the active and reactive power outputs of gen-
erator i. We set p

i
= pi = q

i
= qi = 0 for i ∈ B \ G.

Constraint (6d) sets the ramp down and ramp up limits of
generator i. Constraints (6e) and (6f) limit the transmission
capacity and the phase angle of line (i, j) as a function of the
maximum allowable flow and phase angle bound, respectively.

The MINLP formulation is obtained as MO:{(1) : (2)–(6)}

B. An Alternative Formulation

In order to obtain an SOCP-based relaxation for the MINLP
model problem, we first provide an alternative formulation
motivated by [25], [26]. We define the following decision
variables:

• For each bus i ∈ B, time t ∈ T , and scenario ω ∈ Ω,
– ciit(ω) := |Vit(ω)|2.

• For each line (i, j) ∈ L, time t ∈ T , scenario ω ∈ Ω ,
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– cijt(ω) := |Vit(ω)||Vjt(ω)| cos(θit(ω) − θjt(ω))
– sijt(ω) := −|Vit(ω)||Vjt(ω)| sin(θit(ω) − θjt(ω)).

We substitute the new variables in Constraints (4), (5), and
(6a) and linearize them as follows. For each time t ∈ T and
scenario ω ∈ Ω:

pgit(ω)− pdit(ω) + rit(ω)r
R
i − lit(ω)− (p2g)it(ω) (7a)

+ (g2p)it(ω)ηp + uit(ω) = giiciit(ω) +
∑

j∈δ(i)

pijt(ω) i ∈ B

qgit(ω)− qdit(ω) = −biiciit(ω) +
∑

j∈δ(i)

qijt(ω) i ∈ B (7b)

pijt(ω) = Gijciit(ω) +Gijcijt(ω)−Bijsijt(ω) (i, j) ∈ L
(7c)

qijt(ω) = −Bijciit(ω)−Bijcijt(ω)−Gijsijt(ω) (i, j) ∈ L
(7d)

V 2
i ≤ ciit(ω) ≤ V

2

i i ∈ B. (7e)

To preserve the trigonometric relation between the new
variables ciit(ω), cijt(ω), sijt(ω), we need additional non-
convex constraints. These, so-called consistency constraints
are defined for each line (i, j) ∈ L, time t ∈ T , and scenario
ω ∈ Ω as follows:

cijt(ω)
2 + sijt(ω)

2 = ciit(ω)cjjt(ω) (8a)
θjt(ω)− θit(ω) = atan2(sijt(ω), cijt(ω)). (8b)

Subsequently, an alternative exact formulation to MO is
obtained as: {(1): (2), (3), (6b)–(6f), (7), (8)}

C. MISOCP Relaxation

We convexify the consistency constraints by eliminating
Constraint (8b) and relaxing Constraint (8a) as follows:

cijt(ω)
2 + sijt(ω)

2 ≤ ciit(ω)cjjt(ω). (9)

The MISOCP relaxation of the proposed formulation is
obtained as MR : {(1): (2), (3), (6b)–(6f), (7), (9)}.

III. SOLUTION METHOD

We propose a systematic solution method based on MIS-
OCP. The original problem MO is challenging to solve with
standard local solvers; even if solved, a locally optimal
solution can be obtained. Therefore, we use the MISOCP
relaxation MR to aim for globally optimal solutions to MO. If
the convex relaxation is exact, it guarantees global optimality
to the original problem. Although the SOCP relaxation of OPF
is rarely exact in practice, we can still exploit it in two aspects:
First, it provides a lower bound (LB) for the optimal value
of the original problem MO. Second, we utilize the optimal
solution of the relaxation to guide a local solver to obtain a
feasible solution, hence, an upper bound (UB), for the original
problem MO. In this way, we obtain lower and upper bounds
to MO, from which we can compute a quality measure for
global optimality.

The MISOCP relaxation MR is a stochastic multi-period
mixed-integer programming model, and it is hard to solve

using standard solvers (e.g., Gurobi) for increasing instance
size. Therefore, we propose Benders decomposition to solve
MR. We first separate the model into a master problem (MP )
and |Ω| subproblems (SPω). In the master problem, we make
the location and sizing decisions subject to the investment
constraints (Constraints (2)). In each subproblem, we solve the
SOCP relaxation of the multi-period OPF for a fixed scenario
ω ∈ Ω (SPω : {(1) : (3), (6b)–(6f), (7), (9)}). Note that
Benders decomposition converges to an optimal solution if
the subproblems are convex [27].

Algorithm 1 details our solution method. In the first step, we
solve master problem MP to obtain an initial solution set of
investment decisions P ∗ = {rB∗

i , rR∗
i , hB∗

i , hR∗
i } and a Benders

lower bound (BLB). Then, we solve each subproblem SPω to
obtain Benders upper bound (BUB) and generate optimality
cuts (Φ). Then, we include the optimality cuts in MP and
solve the resulting problem to update BLB. We repeatedly
solve the SPω’s and MP until the Benders optimality gap is
smaller than ϵ. In the second step, we set our global lower
bound LB equal to BLB. We then fix the investment decisions
P in the MO to obtain UB from the remaining non-linear
program (NLP). Since the investment decisions are fixed in
MO, the remaining problem becomes an NLP that can be
decomposed into |Ω| subproblems as MOω for each scenario
ω ∈ Ω. We solve these subproblems MOω to obtain UB.
Lastly, we calculate the global optimality gap.

Algorithm 1 Solution Approach

1: Set: LB = BLB = -∞, UB = BUB = ∞
2: Step 1:
3: Solve MP to obtain P ∗ = {rB∗

i , rR∗
i , hB∗

i , hR∗
i }

4: Set BLB ← z(MP )
5: while (1− BLB/BUB) < ϵ do
6: for all ω ∈ Ω do
7: z(SPω)← Solve SPω subject to P ∗.
8: BUB ← min

(∑
ω∈Ω z(SPω),BUB

)
.

9: if BUB ≥
∑

ω∈Ω z(SPω) then
10: P ← P ∗

11: Generate optimality cuts Φ
12: Solve MP with Φ to obtain P ∗

13: Set BLB ← z(MP )
14: Step 2:
15: Set LB to BLB
16: Fix P and decompose MO into |Ω| subproblems as MOω

17: for all ω ∈ Ω do
18: z(MOω

)← Solve MOω

19: UB ←
∑

ω∈Ω z(MOω
)

20: Compute global optimality gap as 100× (1− LB/UB)

IV. MODEL INPUT

Our model input is based on discussions with the stake-
holders in the energy sector within the HEAVENN Program
in the Northern Netherlands, where Europe’s first hydrogen
valley is being built [28]. Our model draws on data on the
power network dynamics, renewable energy production, and
hydrogen demand. We detail the related data in this section,
while parameters for sensitivity analysis are in Section V.
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For the MOPF dynamics, we consider a 24-hour time
horizon of 1-hour periods, i.e., |T | = 24, from 00:00 to
00:00 the following day. We create daily scenarios to specify
realized electricity demand, electricity price, and renewable
energy supply for each of the 24-hour periods. Each scenario
represents a typical day of each season of the year 2021,
resulting in four representative days throughout the year.

A. OPF instance

As the actual grid data of the Netherlands is confidential,
we test our algorithm on the well-established OPF instance
IEEE30 from the Power Grid Library (PGLIB-OPF) [29],
which includes the network structure and parameters for a
single period. To make it compatible with the multi-period
formulation, we adjust the relevant parameters that vary on
an hourly basis (e.g., electricity demand and price) and keep
other parameters fixed.

We obtain electricity demand and day-ahead electricity
prices data from the European Network of Transmission Sys-
tem Operators for Electricity (ENTSOE) [30]. We calculate the
hourly averages of electricity demand for each season associ-
ated with the representative day. After normalizing the hourly
averages by their maximum, we multiply the network’s active
and reactive power load with the corresponding normalized
values. We ended up with an average of 195 kWh hourly active
power load ranging from 150 to 283kWh. See Algorithm 2 for
the details.

Algorithm 2 Hourly electricity demand
Input: From ENTSOE : Set of hourly average electricity
demand for each scenario D = {dt(ω) : t ∈ T , ω ∈ Ω} From
OPF Data : pdi , q

d
i

Output: Hourly power load values
pdit(ω), q

d
it(ω)

1: max_demand = max(D)
2: for all t ∈ T , ω ∈ Ω do
3: dt(ω) =

dt(ω)
max_demand

4: for all i ∈ B do
5: pdit(ω) = pdi × dt(ω)
6: qdit(ω) = qdi × dt(ω)

For hourly electricity generation prices, we multiply the
hourly average day-ahead prices for each season by the
normalized costs of generators over the whole network. Details
are outlined in Algorithm 3. We attain an average of 80
C/MWh hourly electricity generation price ranging from 20
to 220 C/MWh.

We set the cost of unsupplied demand (CU ) to 3000
C/MWh based on [31].

B. Renewable Data

We obtain hourly wind speed data from the Koninlijk Ned-
erlands Meteorologisch Instituut (KNMI) [32]. We consider a
wind turbine with the specifications of a Vestas V20 with a 4.5
m/s cut-in wind speed (vci), a 13.0 m/s rated wind speed(vr),
and 25.0 m/s as the cut-out wind speed (vco) [33]. Given the

Algorithm 3 Hourly electricity generation cost
Input: From ENTSOE: Daily day-ahead prices for each
scenario P = {pt(ω) : t ∈ T , ω ∈ Ω}, From OPF Data :
Generation cost for each generator C = {cg : g ∈ G}
Output: Generation cost for each generator, for each time,
and for each scenario H = {hgt(ω) : g ∈ G, t ∈ T , ω ∈
Ω}

1: average_cost = average(C)
2: for all t ∈ T , k ∈ K do
3: hgt(ω) =

cg
average_cost × pt(ω)

hourly wind speed (vit(ω)) from KNMI data, we calculate the
hourly wind power factor (rit(ω)) of a wind turbine as in [34].

rit(ω) =


0, 0 ≤ vit(ω) ≤ vci
(vit(ω)−vc)
(vr−vci)

, vci ≤ vit(ω) ≤ vr
1, vr ≤ vit(ω) ≤ vco
0, vco ≤ vit(ω)

We assume that a wind turbine with a minimum size of
100 kW can be installed and accordingly set minimum power
rating rR

i to 100 kW. We consider the capital cost of a wind
turbine with a lifetime of 20-30 years as 1.2 MC/MW and set
CR to 1.2 MC/MW [35].

C. Hydrogen Data
The capital cost and lifetime of the electrolyzer, fuel cell,

and hydrogen storage tank are provided in Table I. We consider
average capital costs values corresponding to 1.05, 18.75 ×
10−6, and 1.05 MC/MW for electrolyzer, storage, and fuel
cell, respectively. We adjust the remaining hydrogen-related
parameters based on [3]. We assume that the power rating of
the electrolyzer is at least 30% of the minimum power rating
of wind turbine, and set hR

i to 30 kW, which corresponds to
30% of the minimum power rating of renewables rR

i . Based on
a setting in which the fuel cell capacity is half of the installed
electrolyzer capacity, and the storage tank can store 20 hours
of full electrolyzer output, we set f rate to 0.5 and smax to 20.
Accordingly, a storage unit with 1 MW of electrolyzer costs
approximately 1.6 C/MW, and CH corresponds to 1.6 C/MW.
We set the conversion efficiencies of electrolyzer ηg and fuel
cell ηp to 0.7 and 0.5, respectively.

TABLE I: Hydrogen Data

Technology Capital cost Lifetime
Electrolyzer [36] 0.7 - 1.4 (MC/MW) 20-30y
Storage [36] (6.75- 30.75) ×10−6 (MC /MW) 50y
Fuel cell [37] 0.7 - 1.4 (MC /MW) 20-30y

V. COMPUTATIONAL EXPERIMENTS

We present the results in two parts. First, we show the
trade-off between investment and operational costs. Second,
we present the corresponding optimal location and power
ratings. All computational experiments are carried out on an
Intel Xeon E5 2680v3 CPU with a 2.5 GHz processor and
32 GB RAM. Implementation is coded in Python with Gurobi
9.1.0 and IPOPT for solving the MISOCP relaxation and the
NLP models, respectively. We note an average of 3% global
optimality gap for all the settings.
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A. Trade-off Between Investment and Operational Costs
In this section, we vary the several parameters that can

be influenced by economic, technical, and regulatory policies
to analyze their effect on investment decisions. Figures 1–5
display results for varying hydrogen selling prices, curtailment
costs, emission tax prices, and conversion efficiencies. In each
figure, the graph on the left shows the trade-off between
investment budget and operational cost, while the graph on the
right shows the percentage of the investment budget allocated
to hydrogen storage. Unless otherwise stated, the hydrogen
selling price is set to 2 C/kg, curtailment cost to 40 C/MWh,
and emission tax price to 30 C/ton CO2 (which corresponds
to the setting with red dashed lines in each figure). In each
figure, we vary one parameter between the ranges specified
in Table II, which are deemed relevant values based on
discussions within the HEAVENN Program. The emission tax
price is derived from the proposed emission tax price by the
Dutch government, which is C30 per ton of CO2 for 2021
and C125 for 2030 [38]. We obtain the graphs by solving

TABLE II: Sensitivity analysis parameters

Parameter Range
Green hydrogen selling price (CS) 0-6 C/kg
Curtailment cost (CC ) 0-120 C/MWh
Emission tax price (CE ) 0-125C/ton CO2
Power-to-gas, gas-to-power efficiencies (ηg , ηp): 0.7-1, 0.5-1

the model under different investment budgets ranging from
0 to 1MC. In the graphs, we also provide the investment
budgets scaled to a daily basis to better reflect the overall daily
expense of the power system throughout the lifespan of green
technologies. Accordingly, we use the following equation:

Dc = C
δ · (1 + δ)γ

(1 + δ)γ − 1
· 1

Nyear

where Dc is the daily capital cost, C is the capital cost, δ
is the annual discount rate, γ is the lifetime, and Nyear is
the number of days in a year. Based on Table I and [35], we
assume that a wind turbine and a hydrogen storage unit have
a lifetime of γ = 25 years and an annual discount rate of
δ = 5%. While the actual investment budget ranges from zero
to 1MC, corresponding daily scaled values range from 0 to
200C.
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Fig. 1: Effect of hydrogen selling price

1) Effect of Hydrogen Market: In Figure 1, the orange line
represents the case where the budget is restricted to renew-

ables, excluding the storage option. In that case, operational
cost decreases until a certain point (a budget of 0.5 MC)
as the system is supported by increasing renewables, and
thus total conventional generation cost and emission penalty
decrease. After that point, we observe that the operational
cost remains constant, and additional renewables are not
integrated into the system. Due to the potential increase in
renewable power curtailments arising from the limited capacity
of transmission lines, further investments in renewables would
increase operational costs. Consideration of hydrogen storage
even with no hydrogen market availability (blue line) changes
the cost dynamics. After a budget of 0.5 MC, the operational
cost can be decreased as the integration of hydrogen storage
saves curtailment costs and adds profit from arbitrage. With the
existence of a hydrogen market, when hydrogen can be sold
externally (red, green, and black lines), even higher gains are
possible, leading to lower operational costs. This underlines
the importance of a functioning hydrogen market on cost
dynamics. Figure 1b shows that a high hydrogen selling price
increases the percentage of the budget allocated for storage.
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Fig. 2: Effect of renewable curtailment cost

2) Effect of Curtailment Cost: Figure 2 depicts that for low
investment budgets, changes in curtailment cost do not affect
the operational costs since only a few renewables are installed,
and hence there is no curtailment. For higher budgets, we can
observe this effect since curtailment need arises with the higher
penetration of renewables. To prevent a substantial increase
in total curtailment costs, the percentage of budget allocated
to storage increases, as seen in Figure 2b. We note that the
increase in operational costs would be much more prominent
when no storage is available. To examine this further, we solve
the model under the same parameter settings with no hydrogen
storage. We observe that the network can achieve an average
of 34% operational cost savings with hydrogen storage. This
percentage drops to 14%, if we exclude the hydrogen market.

3) Effect of Emission Tax Price: Figure 3a shows that
the reduction rate of operational cost is diminishing as the
investment budget rises under all levels of emission tax price.
To examine the effect of including storage, we solve the
model under the same parameter settings but with no storage.
We observe that the network can achieve an average of
31% operational cost savings with hydrogen storage. This
percentage drops to 16%, if we exclude the hydrogen market.

Figure 3b shows that increasing emission tax may decrease
the budget allocated to storage in some specific cases due to
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Fig. 3: Effect of emission tax price

the interactions with the hydrogen market. The system owes
an emission tax price per kWh of electricity produced by
conventional generators. If the renewable output is used at
once or stored to meet network demand of a later period,
the conventional generation amount decreases. However, if the
stored hydrogen is sold outside the network, the conventional
generation amount within the network is not altered. However,
we should note that replacing green hydrogen with other
alternative resources, such as natural gas, significantly reduces
emissions. Therefore, to correctly assess emission reductions
and to promote green hydrogen production, incentives such
as tax credit per emission abated are planned to be given
[39] for hydrogen. Thus, considering such policies is likely
to change budget allocation dynamics and increase investment
in hydrogen storage.
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Fig. 4: Effect of conversion efficiencies

4) Effect of Conversion Efficiencies: To analyze the effect
of conversion efficiencies on decision dynamics, we plot Fig-
ures 4. In Figure 4a, the orange line represents the case without
storage. In that case, the operational cost is significantly
higher than the cases with storage. This shows that the use of
hydrogen storage is cost-efficient in the long term despite the
current low conversion efficiencies. As efficiencies improve,
we observe that operational costs decreases due to the rise
in profit from selling hydrogen and arbitrage revenues. We
observe that budget allocation dynamics are not much affected
in this particular setting (see Figure 4b).

To further elaborate on conversion efficiencies, we exclude
curtailment costs and emission tax prices (see Figure 5).
Compared to Figure 4a, the gap between storage and no-
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Fig. 5: Effect of conversion efficiencies (curtailment costs and
emission tax prices are excluded)

storage options is less in Figure 5a. In Figure 5b, we observe
more prominent changes in budget allocation dynamics in
comparison to Figure 4b. We conclude that the curtailment cost
and emission tax price can dominate the effect of conversion
efficiencies on budget allocation dynamics.

Overall, we observe that daily operational costs are notably
higher when we only allow the integration of renewables.
It shows the importance of joint optimization of renewables
and hydrogen storage integration to achieve operational cost
savings. Our optimization framework can provide insights for
an investment plan on the economic viability and which part
of the investment is made on hydrogen storage to achieve
minimum operational cost. Furthermore, our findings show
how changes in hydrogen selling price, curtailment cost,
emission tax price, and conversion efficiencies affect the
budget allocation dynamics. Thus, they can provide valuable
insight to authorities on incentivizing network operators to
invest in hydrogen storage with regulations in operational level
parameters.

B. Optimal Locations and Power Ratings

In this section, we report corresponding location and power
rating decisions. We mainly focus on the cases where we ob-
serve significant differences in the budget allocation dynamics
in the previous section.

1) Effect of Hydrogen Market: We first analyze the effect of
the hydrogen market. Table III shows the change in location
decisions for three settings in Figure 1: no-storage, 0 C/kg
and 4 C/kg hydrogen selling price. Locations with hydrogen
storage are indicated with a superscript plus sign. Figure 6
shows the power ratings of renewables and hydrogen storage
for the corresponding locations in Table III.

For budgets below 0.375 MC, only renewables are located
in the same locations in all settings. When the budget is over
0.375 MC, instead of using the entire budget for renewables,
we observe a tendency to shift towards hydrogen storage. For
example, at a 0.5 MC budget, allowing for hydrogen storage
reallocates the budget from opening renewables at buses 7 and
12 to building hydrogen storage at bus 10 and increasing the
power rating of the renewable at bus 5. With a functioning
hydrogen market, additional hydrogen storage is built at bus
5, and the renewable at 24 is not opened. When the budget
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TABLE III: Locations of Renewables and Hydrogen Storage

Budget Locations
(MC) No-storage

(I)
Storage without hy-
drogen market (II)

Storage with 4 C/kg hy-
drogen (III)

0.125 5 5 5
0.25 5 8 5 8 5 8
0.375 5 10 24 5 10 24 5 10+

0.5 5 7 12 24 5 10+ 24 5+ 10+

0.675 5 10 12 24 5+ 8+ 12 24 5+ 10+ 24+

0.75 5 10 12 24 5+ 8+ 12 24 5+ 8+ 10+ 24+

0.875 5 10 12 24 5+ 10+ 12 24+ 5+ 10+ 12+ 24+

1 5 10 12 24 5+ 7+ 10+ 12+ 24+ 5+ 7+ 10+ 12+ 24+
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Fig. 6: Power Ratings

is over 0.675 MC, for the no-storage case, decisions do not
change since the increased renewable penetration results in the
increased curtailment leading to higher operational costs. For
the storage cases, renewables are increasingly co-located with
hydrogen storage, increasing total renewable integration in the
network. With a hydrogen market, this effect is similar, but the
location and sizing decisions in the network differ.

2) Effect of the Curtailment Cost: Table IV shows the
location decisions corresponding to the 0 and 80 C/MWh
curtailment cost settings in Figure 2.

Regardless of the change in parameters, bus 5 is always
a preferred location that has the highest power load. For 0
C/MWh curtailment costs, we also observe buses 7 and 8,
which are the locations with the highest demand after bus
5. For 80 C/MWh curtailment costs, buses 10 and 24 are
frequently preferred. Compared to buses 7 and 8, the total
thermal limit of the transmission lines connected to bus 10
is higher, which accommodates renewables conveniently by

TABLE IV: Effect of the Curtailment Cost on Locations

Budget Locations
(MC) 0 C/MWh curtailment

cost
80 C/MWh curtailment
cost

0.125 5 5
0.25 5 8 5 10
0.375 5 10 5 10 24
0.5 5 8 21 5 10 24+

0.675 5 8+ 15 27 5+ 10+ 24+

0.75. 5+ 7 8 10 15+ 5+ 8 10+ 24+

0.875 5+ 7 8 15+ 28+ 5+ 10+ 12+ 24+

1 5+ 7 8+ 12 24+ 5+ 7+ 10+ 12+ 24+

dispatching excess power. We observe that an increase in
curtailment cost shifts location from higher power loads to
higher thermal limits.

Particularly the locations near load centers are preferable
since they reduce supply needs from more distant generators,
thereby reducing transmission losses. Transmission lines con-
nected to them have higher total thermal limits, so curtailment
need is less. The resulting location decisions show the im-
portance of considering transmission losses and, thereby, the
importance of AC power equations.

3) Comparison with DC Approximation: We obtain the
location and sizing decisions from the DC approximation
of the original model rather than its MISOCP relaxation.
Then, we fix the decisions in the original AC formulation to
make operational cost comparisons. The results are reported
in Table V for the base case with red dashed lines. We note,
on average, 23% operational cost savings with the AC formu-
lation. The results emphasize the importance of considering
the AC OPF dynamics for economically efficient location and
sizing decisions.

TABLE V: Comparison with DC Approximation

Budget 0.125 0.25 0.375 0.5 0.675 0.75 0.875 1 Avg
AC 226 162 118 89 62 36 11 -12 86
DC 229 167 134 111 89 71 56 38 112
Gap % 1 3 12 20 30 48 80 131 23

VI. CONCLUSIONS

This paper proposes a joint optimization model for the
location and sizing of renewables and hydrogen storage based
on multi-period AC OPF. We provide a systematic solution
approach based on SOCP within a Benders decomposition
framework to provide solutions to our model with a global
optimality guarantee. On a representative test case, we conduct
computational experiments and show that the joint integra-
tion of renewables and hydrogen storage leads to significant
operational cost savings. Furthermore, we show that it is
crucial to consider AC power flow equations instead of DC
approximations as they lead to the improved location and
sizing decisions and thus lower operational costs. Moreover,
we show how a functioning hydrogen market can change
decision dynamics. Finally, we use our solution framework
to provide qualitative insights for decision-makers on how
to integrate renewables and hydrogen storage under varying
operational parameters such as the hydrogen selling price,
curtailment cost, emission tax price, and conversion efficiency.
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Our optimization framework is general, meaning that the
operational specifications of MOPF, investment decisions, and
storage type can be adapted or altered without affecting the
structural ideas of our solution method.

Future research might focus on considering uncertainties
in future hydrogen markets regarding prices and demands. A
natural next step for our research is considering the expansion
of the transmission lines in the network too.
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